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Abstract

This thesis is concerned with a class of mathematical models for the collective behaviour
of autonomous agents, or particles, in general domains D ⊂ Rd, where particles exhibit pair-
wise interactions and may be subject to environmental forces. Such models have been shown
to exhibit non-trivial behaviour due to interactions with the boundary of the domain ∂D.
More specifically, when there is a boundary, it has been observed that the swarm of particles
readily evolves into unstable states. Given this behaviour, we investigate the regularizing
effect of adding noise to the system in the form of Brownian motion at the particle level,
which produces linear diffusion in the continuum limit. To investigate the effect of linear
diffusion and interactions with the boundary ∂D on swarm equilibria, we analyze critical
points of the associated energy functional, establishing conditions under which global min-
imizers exist. Through this process we uncover a new metastability phenomenon which
necessitates the use of external forces to confine the swarm. We then introduce numerical
methods for computing critical points of the energy, along with examples to motivate further
research. Finally, we consider the short-time dynamics of the stochastic particle system as
the noise strength ν approaches zero. We verify that the analytical O(ν) convergence rate
is represented in numerics, which we believe validates and motivates the use of stochastic
particle simulations for further exploration of the regularizing effect of Brownian motion on
aggregation phenomena in domains with boundaries.

Keywords: nonlocal modeling, swarms, Brownian motion, domains with boundaries, en-
ergy minimizers, metastability, numerical methods
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Chapter 1

Introduction

We study a well-known mathematical model for the collective behaviour of groups of
autonomous agents, or particles, in the absence of a group leader. Such groups are referred
to in general as swarms. In the mathematical community, the term aggregation is used to
refer to the phenomenon of swarming. The mathematical model was originally developed
to understand the behaviour of biological swarms, such as flocks of birds, schools of fish
or bacterial colonies. In the 21st century, it has the potential to advance the development
of artificial life, for instance to control fleets of self-driving cars, and has even been used
to model non-physical entities, such as opinion dynamics in social networks. In this way,
the biological phenomenon of swarming has found a permanent place in human life and
its study is now crucial for many emerging technologies. Two main topics we will try to
address are the emergence of equilibria, or stationary patterns, within a swarm and short
time evolution from a random state. Both topics deal with the level of noise within the
swarm and the environment in which the swarm is placed, namely the physical boundaries
of the spatial domain and any external forces.

In the models we consider, the main drivers of collective pattern formation are pair-
wise interactions between particles in the swarm as mediated by an interaction potential
K whose gradient gives the interaction force between two particles as a function of inter-
particle distance. We model such systems in general domains D ⊂ Rd which may contain
boundaries and assume that in addition to being subject to interaction and external forces,
each particle exhibits random fluctuations given by Brownian motion. We will find that
Brownian motion regularizes certain instabilities found in the swarming model posed in
domains with boundaries, as well as induces metastable behaviour in the continuum limit.
Before introducing the particle and continuum swarming models to be analyzed, the varia-
tional framework, and the specific problems to be addressed, we review the necessary tools
and terminology from measure-theoretic probability theory.
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1.1 Notation and Terminology

1.1.1 Definitions

• Let Ld be the d-dimensional Lebesgue measure, Bd be the Borel σ-algebra on Rd

(generated by the open subsets of Rd), and BR(x) denote the d-dimensional Euclidean
ball of radius R centred at x ∈ Rd.

• For any A ∈ Bd, let |A| := Ld(A) be the volume of A and 1A be its indicator function.

• ForD ∈ Bd, let P(D) denote the set of Borel probability measures onD and Pac(D) ⊂
P(D) be the set of absolutely continuous measures with respect to Ld.

• Define the support of a measure µ ∈ P(D) as the (closed) set

supp (µ) := {x ∈ D : for all R > 0, µ (BR(x)) > 0} .

• For a measure µ ∈ P(D), a condition Q(x) is satisfied µ-almost everywhere and we
write µ-a.e. if µ({x ∈ D : Q(x) does not hold }) = 0.

• For µ ∈ P(D), x ∈ Rd and γ ∈ R, define the γth moment of µ centred at x as

Mx
γ (µ) :=

∫
D
|y − x|γ dµ(y) (1.1)

with Mγ(µ) := M0
γ (µ).

• For µ ∈ P(D) and measurable function F : D → D denote by F#µ ∈ P(D) the
push-forward of µ by F defined by

F#µ(B) = µ
(
F−1(B)

)
for all Borel sets B ⊂ D.

Remark 1.1. Recall that every measure µ ∈ Pac(D) can be written dµ(x) = ρ(x) dx for
some ρ ∈ L1(D) with ρ ≥ 0 and

∫
D ρ(x) dx = 1. The function ρ is referred to as the density

of µ. Throughout, we will often refer to an absolutely continuous measure directly by its
density ρ, and by abuse of notation sometimes write ρ ∈ Pac(D) to mean dρ(x) = ρ(x) dx.

1.1.2 Weak-* Relative Compactness and Tightness of Measures

We say that a sequence {µn}n≥0 ⊂ P(D) converges weakly-* to µ ∈ P(D) and write
µn

∗
⇀ µ if for every bounded continuous function f : D → R we have

lim
n→∞

∫
D
f(x) dµn(x) =

∫
D
f(x) dµ(x).

2



A collection of measures F ⊂ P(D) is said to be weakly-* relatively compact if for every
sequence {µn}n≥0 ⊂ P(D) there exists a subsequence {µnk}k≥0 which converges weakly-*
to some µ ∈ P(D).

Another notion of compactness is tightness: a collection of measures F ⊂ P(D) is said
to be tight if for every ε > 0 there exists a compact set Kε ⊂ D such that

µ(Kc
ε ) < ε

for every µ ∈ F , where Kc
ε denotes the complement of Kε within D (i.e. Kc

ε = D \ Kε).
Weak-* relative compactness and tightness are related by the following lemma, which will
be used extensively in Chapter 2 to prove existence of global minimizers:

Lemma 1.2. (Prokhorov’s theorem, [5, Chapter 1, Section 5]) A collection of measures
F ⊂ P(D) is weakly-* relatively compact if and only if it is tight.

1.1.3 The p-Wasserstein Space

Solutions to the swarming models (1.14) and (1.20) below are measure-valued. As such,
well-posedness is established with respect to convergence in a suitable p-Wasserstein dis-
tance Wp(·, ·) for some p ∈ [1,∞] and can be found in [11, 33, 12] and [34]. Here we give a
brief introduction to the topology of the p-Wasserstein spaces.

For p ∈ [1,∞), define the space

Pp(D) := {f ∈ P(D) : Mp(f) < +∞} (1.2)

where Mp(f) is defined (1.1). The p-Wasserstein distance on Pp(D) is then

Wp(f, g) =
(

inf
π∈Λ(f, g)

{∫
D×D

|x− y|p dπ(x, y)
}) 1

p

=
(

inf
X∼f,Y∼g

{
E[|X − Y |p]

}) 1
p

(1.3)

where Λ(f, g) is the set of joint probability measures on D × D with marginals f and
g, also known as transport plans, and (X,Y ) ranges over all possible couplings of random
variables X and Y with laws f and g, respectively. The expectation E in (1.3) is taken with
respect to the product measure P1 × P2 assuming X is defined on some probability space
(Ω1,F1,P1) and Y is defined on (Ω2,F2,P2) (see [27] for an introduction to the theory of
random variables).

3



We will also use the space P∞(D) of probability measures on D with compact support
together with the ∞-Wasserstein distance

W∞(f, g) = inf
X∼f,Y∼g

P-ess sup |X − Y | = inf
π∈Λ(f, g)

π -ess sup
(x,y)∈D×D

|x− y| (1.4)

where

P-ess sup |X − Y | := inf
{
λ ≥ 0 : P(|X − Y | > λ) = 0

}
(1.5)

and

π -ess sup
(x,y)∈D×D

|x− y| := inf
{
λ ≥ 0 : π({(x, y) ∈ D ×D : |x− y| > λ}) = 0

}
. (1.6)

Some essential facts about Wp are:

1. For p ∈ [1,∞], the metric space (Pp(D),Wp) is complete.

2. Convergence in (Pp(D),Wp) for p ∈ [1,∞) is equivalent to weak-* convergence of
measures, while convergence in (P∞(D),W∞) implies weak-* convergence but the
converse is not true.

3. For all 1 ≤ p ≤ q ≤ ∞,
Wp(f, g) ≤ Wq(f, g). (1.7)

We refer readers to the books [1, 32] for further background on p-Wasserstein spaces.

1.2 Modeling Aggregation

In this section we introduce the mathematical models for aggregation. We direct readers
to [8] for a review of deterministic mathematical models for collective behaviour and [21] for
a review of mean-field limit theory for both deterministic and stochastic particle systems.

1.2.1 Plain Aggregation in Free Space

The first model we consider is the plain aggregation model, where “plain” here refers to
swarming in the absence of Brownian motion. We start by describing the evolution of an
N -particle system Xt =

{
Xi
t

}N
i=1 as the solution to the initial value problem

d

dt
Xi
t = − 1

N

N∑
j 6=i
∇Xi

t
K
(
Xi
t −X

j
t

)
−∇V

(
Xi
t

)

Xi
0 = xi0 ∈ Rd.

(1.8)

4



The motion of particles is determined by an external potential V : Rd → R which encodes
environmental forces such as gravity and an interaction potential K : Rd → R through
which particles sense each other and feel pairwise interaction forces. We denote by ∇x
the gradient with respect to x and for radial K, with some abuse of notation, we write
K(x) = K(|x|) such that

∇xK(x− y) = K ′(|x− y|) · x− y
|x− y|

.

See Figure 1.1 for examples of pairwise forces between particles imparted from an interac-
tion potential K.

The first-order system (1.8) was introduced as a model for biological swarms by Mogilner,
Edelstein-Keshet, Bent and Spiros in [26], and arrives as an approximation of the following
second-order system in which particle trajectories are governed by Newton’s Second Law
F = mẍ:

mi
d2

dt2
Xi
t = −mi

d

dt
Xi
t −mi

N∑
j 6=i

mj∇Xi
t
K
(
Xi
t −X

j
t

)
−mi∇V

(
Xi
t

)
, (1.9)

where a linear drag force F idrag := −mi
d
dtX

i
t has been assumed. Assuming in addition that

transient inertial forces are negligible (i.e. that changes in velocity are felt instantaneously)
one arrive at the right-hand side of (1.9) being O(1) while the inertial term on the left
mi

d2Xi
t

dt2 is o(1) and can be neglected. Rearranging terms and dividing by mi then gives the
first-order dynamics (1.8), under the assumption that all particles have equal mass 1

N . In
[26] the authors argue that these approximations are valid for modeling biological aggre-
gations, as individuals in a large system of organisms and which respond quickly to social
cues, such as with flocks of birds or schools of fish, can be interpreted as having negligible
inertia.

To obtain a continuum description of the swarm in the limit of large N , we consider
the initial positions X0 to (1.8) being drawn independently from some probability measure
µ0 ∈ P(Rd). With Xt in hand, we can define the empirical measure

µXt := 1
N

N∑
i=1

δXi
t

(1.10)

where δx is the Dirac mass centred at x. Under suitable conditions on K, V and µ0, it is
possible to justify the mean-field limit [21]

µXt
∗−−−⇀

N→∞
µt

5



Figure 1.1: Interaction force imparted by the attractive-repulsive KQANR potential used in
Chapter 4. The leftmost red particle feels a repulsive (positive) force from the blue particle
since it lies in the region where −K ′(r) > 0. The rightmost red particle feels an attractive
(negative) force from the blue particle since it lies in the region where −K ′(r) < 0.

for almost every t > 0, where ∗
⇀ again denotes the weak-* convergence of measures. The

limiting measure µt then solves the transport problem
∂

∂t
µt +∇ · (µt v) = 0, t ∈ (0, T ]

µt
∣∣
t=0 = µ0 ∈ P2(Rd)

(1.11)

for some T > 0 and velocity v(x) given nonlocally by

v(x) := −∇K ∗ µt −∇V = −
∫
Rd
∇K(x− y) dµt(y)−∇V (x). (1.12)

Strictly speaking, the velocity v(x) should be written v[µt](x) as it depends on µt; how-
ever, for notational convenience we simply write v(x). The integro-differential continuity
equation (1.11) is called the plain aggregation equation and conveys the conservation of
mass: no mass enters or leaves the swarm. At each time t ∈ [0, T ], the measure µt is
the probability distribution for the location of particles and can be interpreted as a con-
tinuum of mass with total mass normalized to 1. In this way, an infinitesimal parcel of
mass dµt(x) centred at x at time t travels through space with velocity v(x). Although it
is not a partial differential equation (PDE) in the traditional sense, we will often refer to
(1.11) in shorthand as a PDE, and use the same convention for the continuum models below.

6



1.2.2 Plain Aggregation with Boundaries

The model we use for plain aggregation in general domains D ⊂ Rd for which the
boundary ∂D is nonempty was introduced by Wu and Slepčev in [33] for convex domains
with C1 boundary and extended to non-convex domains with non-differentiable boundaries
by Carrillo, Slepčev and Wu in [12]. The model employs a velocity projection operator
Px : Rd → Rd to ensure that particles remain within D:

Px(v) =


v , if x ∈ int(D) or if x ∈ ∂D and v · n ≤ 0 ,

Π∂Dv , otherwise.
(1.13)

Here int(D) denotes the interior of the domain D and Π∂Dv represents the projection of
v onto the tangent plane of ∂D at x ∈ ∂D. In words, Px(v(x)) is the identity map unless
x lies on the boundary of D and v(x) points outside D. With this we arrive at the plain
aggregation model in domains with boundaries,

∂

∂t
µt +∇ · (µtPx(v)) = 0, t ∈ (0, T ]

µt
∣∣
t=0 = µ0 ∈ P2(D),

(1.14)

where v is defined above by (1.12). The associated particle system then satisfies


d

dt
Xi
t = Px

− 1
N

N∑
j 6=i
∇Xi

t
K
(
Xi
t −X

j
t

)
−∇V

(
Xi
t

)
Xi

0 = xi0 ∈ Rd,

(1.15)

where Px enforces so-called “slip/no-flux” boundary conditions.

Solutions to (1.11) and (1.14) are to be interpreted in the weak-measure sense: a
curve µt : [0, T ] → P(D) is said to be a weak-measure solution of (1.14) if for all φ ∈
C∞c (D × (0, T )) we have

∫ T

0

∫
D

(
∂

∂t
φ(x, t) +∇φ(x, t) · Px(v(x))

)
dµt(x) dt = 0. (1.16)

Returning to the finite particle system Xt, by simply substituting a solution of the form
(1.10) into the definition of a weak-measure solution (1.16), we see that empirical measures
are indeed weak-measure solutions to (1.14) if we assume that ∇K(0) is finite. In this way,
we recover the particle dynamics (1.8) from the continuum model (1.11).

7



1.2.3 Aggregation-Diffusion in Free Space

Now, consider again a swarm of N particles Xν
t =

{
Xν,i
t

}N
i=1

, this time prescribed with

N independent Brownian motions
{
Bi
t

}N
i=1 and obeying the system of stochastic differential

equations (SDEs)
dXν,i

t =

− 1
N

N∑
j 6=i
∇
Xν,i
t
K
(
Xν,i
t −X

ν,j
t

)
−∇V

(
Xν,i
t

) dt+
√

2ν dBi
t,

Law
(
Xi,ν

0

)
= µν0 ∈ Rd.

(1.17)

This is the stochastic analogue of the free-space system (1.8), in which randomness occurs
in the form of Brownian motion as well as in the initial conditions, which are independently
drawn and identically distributed (i.i.d.) with law µν0 . As before, we arrive at a continuum
description by defining the empirical measure

µν,Xt := 1
N

N∑
i=1

δ
Xν,i
t

and taking the limit as N →∞. This produces the mean-field dynamics
∂

∂t
µνt +∇ · (µνt vν) = ν∆µνt

µνt
∣∣
t=0 = µν0 ∈ P2(Rd),

(1.18)

with nonlocal velocity vν(x) defined as in (1.12) by

vν(x) := −
∫
D
∇K(x− y) dµνt (y)−∇V (x). (1.19)

The integro-differential equation now contains the diffusion term ν∆µνt which gives the
model the name aggregation-diffusion and distinguishes it from the plain aggregation model.

1.2.4 Aggregation-Diffusion with Boundaries

We now wish to extend the free-space aggregation-diffusion model to more general do-
mains D ⊂ Rd with boundaries. Since (1.18) is second-order in space, it is natural to impose
homogeneous Neumann boundary conditions for mass conservation and containment within
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D, which gives us the system


∂

∂t
µνt +∇ · (µνt vν) = ν∆µνt , x ∈ D

〈
n(x), µνt (x) vν(x) + ν∇µνt (x)

〉
= 0, x ∈ ∂D

µνt
∣∣
t=0 = µν0 ∈ P2(D)

(1.20)

where n(x) denotes the unit outward normal to ∂D at x and 〈·, ·〉 is the Euclidean inner
product. At each time t ∈ (0, T ] we require µνt to be absolutely continuous with respect to
Ld with density ρνt , and again we look for a weak-measure solution to (1.20), which is defined
as a curve µνt : [0, T ] → Pac(D) such that for all φ ∈ C∞c (D × (0, T )) with 〈n,∇φ〉 = 0
along ∂D it holds that

∫ T

0

∫
D

(
∂

∂t
φ(x, t) +∇φ(x, t) · v(x) + ν∆φ(x, t)

)
dµνt (x) dt = 0. (1.21)

The stochastic particle system underlying (1.20) obeys the system of reflected SDEs,
dXν,i

t =

− 1
N

N∑
j 6=i
∇
Xν,i
t
K
(
Xν,i
t −X

ν,j
t

)
− V

(
Xν,i
t

) dt+
√

2ν dBi
t + dRit

Law
(
Xi,ν

0

)
= µν0 ∈ P2(D).

(1.22)

A solution to (1.22) is a pair of random processes (Xν
t , Rt). The reflection processes Rit

have bounded variation and satisfy

Rit =
∫ t

0
n(Xν,i

s ) d|Ri|s, |Ri|t =
∫ t

0
1∂D(Xν,i

s ) d|Ri|s ,

where |Ri|t is the total variation of Rit on [0, t]:

|Ri|t = sup
∑
k

|Ritk −R
i
tk−1 | , (1.23)

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tn = t of [0, t]. In
the event that Xν,i

t ∈ ∂D at time t, the process Rit imparts sufficient force in the direction
n(Xν,i

t ) to guarantee that Xν,i
t remain in D, while for all other times t, Rit does nothing.

Solutions to reflected SDEs as joint processes (Xν
t , Rt), first considered by Skorokhod in

1961 in [28, 29] and extended to interacting particle systems by Sznitman in 1991 in [31],
have become the preferred way of describing stochastic particle systems which underlie so-
lutions to PDEs with no-flux boundary conditions.
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This defines the aggregation-diffusion model in general domains D.

Having introduced the underlying models for swarms in domains with boundaries, let
us emphasize the differences between plain aggregation and aggregation-diffusion.

• For plain aggregation, boundary conditions are imposed on the velocity v(x) through
the projection operator Px, while for aggregation-diffusion, confinement of particles
to D is facilitated by the stochastic reflection processes Rit and by Neumann (no-flux)
boundary conditions at the continuum level.

• Once the initial positions are drawn (which may occur randomly), the motion of
particles in the plain aggregation is deterministic, while the motion of particles in the
aggregation-diffusion is stochastic.

• The plain aggregation equation is first-order in space, while aggregation-diffusion is
second-order.

In essence, while aggregation-diffusion can be seen as an immediate generalization of plain
aggregation in free space (simply setting ν = 0 recovers the latter), when boundaries are
present, the limit ν → 0 is highly singular, causing not only a reduction from second-order
to first-order in space, but a complete alteration in boundary conditions. This is what
makes the zero diffusion limit challenging, providing part of the motivation for Chapter 4.

1.3 Energy Framework

An indispensable part of the analysis of the swarming models above is the variational
framework given by the associated energy functionals. Given a measure µ ∈ P(D) we define
the energy Eν : P(D)→ (−∞, +∞] by

Eν [µ] := K[µ] + νS[µ] + V[µ] (1.24)

where
K[µ] := 1

2

∫
D

∫
D
K(x− y) dµ(y) dµ(x) (1.25)

is the interaction energy,

S[µ] :=


∫
D
ρ(x) log(ρ(x)) dx, µ ∈ Pac(D) with dµ(x) = ρ(x) dx

+∞, otherwise,
(1.26)

is the negative of the Gibbs-Boltzmann entropy, and

V[µ] :=
∫
D
V (x) dµ(x) (1.27)

10



is the external energy.

The energies associated to the swarming models (1.14) and (1.20) are E = E0 and Eν ,
respectively. It is known that under suitable conditions onK and V , weak-measure solutions
to (1.14) and (1.20) are gradient flows of E and Eν , respectively, on the Wasserstein space
(P2(D),W2) [11, 12, 1]. This identifies equilibria of (1.14) and (1.20) as critical points of
the associated energies E and Eν . We now make precise the notions of equilibria of the
aggregation models, stability of equilibria, and critical points of the energies. Many of the
following conventions can be found in [10].

1.3.1 Model Equilibria

Denote an open ball of radius r centred at µ ∈ Pp(D) by

Bp (µ, r) := {η ∈ Pp(D) : Wp(µ, η) < r} .

Equilibria, or steady states, of the aggregation models (1.14) and (1.20) are defined as
probability measures for which swarm velocities are zero:

µ∞ is an equilibrium of (1.14) ⇐⇒ Px(v(x)) = 0 µ∞-a.e. (1.28)

µν∞ is an equilibrium of (1.20) ⇐⇒ vν(x) + ν
∇ρν∞(x)
ρν∞(x) = 0 µν∞-a.e. (1.29)

where dµν∞(x) = ρν∞(x) dx.

The stability of equilibria refers to the time dynamics of the model. An equilibrium µ∞

is locally asymptotically stable if it is attracting in the ball Bp (µ∞, r) for some r > 0. In
other words, for all initial data µ0 ∈ Bp (µ∞, r), solutions to the corresponding PDE satisfy
limt→∞ µt = µ∞. Otherwise the equilibrium µ∞ is said to be unstable.

1.3.2 Critical Points of the Associated Energies

Critical points of the energy Eν have no direct reference to time dynamics of the aggre-
gation models. Before giving a complete definition of a critical point, we first give a more
natural definition in the case of maxima or minima of Eν . For r > 0 we define a Wp-r local
minimizer of Eν to be a measure µ such that

Eν [µ] ≤ Eν [η] for all η ∈ Bp (µ, r) (1.30)

and aWp-r local maximizer analogously by reversing the inequality. In what follows, we will
simply use the terms minimizer, maximizer or extremizer in reference to condition (1.30)
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if the choice of Wp metric has been established.

In Theorem 2.3 we show that condition (1.30) implies that µ satisfies the Euler-Lagrange
equation

K ∗ µ(x) + ν log(ρ(x)) + V (x) = λ for µ-a.e. x ∈ D (1.31)

for some unknown constant λ ∈ R, where dµ(x) = ρ(x) dx. As such, we extend the definition
of a critical point of the energy Eν to be any measure µ ∈ Pac(D) which satisfies the Euler-
Lagrange equation (1.31). This definition allows for much more general critical points to
enter the analysis, including saddle points, as will appear in the next section.

Remark 1.3. Taking the gradient of the Euler-Lagrange equation (1.31), we see that a
critical point µ also satisfies the conditions for equilibria of the PDE model. For the case of
the aggregation-diffusion model, we can also integrate the equilibrium condition (1.29) to
recover (1.31), and so model equilibria and critical points of Eν are equivalent. For the plain
aggregation model, however, this is not exactly the case because of the projection operator
Px in (1.28). Since the main focus of this thesis is on the aggregation-diffusion model, we
will conduct analysis of critical points under the assumption that they correspond exactly
to model equilibria.

Deriving the Euler-Lagrange equation requires showing that the first variation of Eν is
zero with respect to all admissible perturbations of µ, which must at least preserve the
properties

µ(D) = 1 and µ ≥ 0

in order to remain in P(D). Such perturbations will be described by convex combinations
of the form

η = (1− α)µ+ αµ (1.32)

for some α ∈ (0, 1] and µ ∈ P(D). We will sometimes instead use η = µ+ξ where ξ ∈ L1(D)
satisfies ∫

D
ξ(x) dx = 0 and ξ(x) ≥ −ρ(x),

but the formulation (1.32) is more general since it does not require µ to be absolutely
continuous. It is also more useful from the Wp perspective, as the following lemma shows.

Lemma 1.4. For p ∈ [1,∞) and µ, µ ∈ Pp(D), define η as in (1.32). Then

(i) If µ ∈ Bp (µ, r), then η ∈ Bp (µ, r), and

(ii) If µ /∈ Bp (µ, r), then there exists αc ∈ (0, 1) such that η ∈ Bp (µ, r) for all α ∈ [0, αc).

Proof. Let πµ be an optimal transport plan between µ and µ under Wp and define πη ∈
P(D ×D) by

πη := (1− α)ID#µ+ απµ

12



where ID : D → D × D is the diagonal map ID(x) = (x, x). Then πη defines a transport
plan between µ and η, as for any Borel set B ⊂ D we have

πη(B ×D) = (1− α)µ(B) + αµ(B) = µ(B)

and
πη(D ×B) = (1− α)µ(B) + αµ(B) = η(B).

Thus,

Wp
p (µ, η) ≤

∫
D×D

|x− y|p dπη(x, y) = α

∫
D×D

|x− y|p dπµ(x, y) = αWp
p (µ, µ).

From this we immediately deduce (i) and (ii).

Lemma 1.4 is not directly used to prove any theorems in this thesis, but it should emphasize
how general the set of measures η ∈ Bp (µ, r) can be, particularly through implication (ii).
Addressing this generality is central to the problem of establishing existence of minimizers.

1.4 Unstable Equilibria and Diffusive Regularizations

It was observed by Razvan Fetecau and Mitchell Kovacic in [18] that in domains with
boundaries, the plain aggregation model (1.14) routinely evolves into equilibria µds that
consist of two components with disjoint supports: an aggregation on the boundary and an
aggregation in free space. On the half line, these equilibria can be written

µds = (1− S)δ0 + Sµ

for some S ∈ (0, 1) and µ ∈ P ([0,∞)) with supp (µ) ⊂ (0,∞). It was found in [18] that
these states are unstable to the class of perturbations that displace mass from the boundary,
and so from the energy perspective, they are saddle points of E .

Given the gradient flow structure of the plain aggregation model, it seems unlikely that
such saddle points would arise so routinely, and predicting this behaviour seems out of
reach of the current abstract gradient flow theory. By including diffusion in the model,
hence arriving at the aggregation-diffusion model in domains with boundaries (1.20), the
hope is to regularize the plain aggregation model in domains with boundaries, in the sense
of achieving stable equilibria µν∞ as t→∞. The motivation behind taking ν → 0 in (1.20)
is then to arrive at the physically-relevant weak solution to the plain aggregation model
(1.14), employing the notion of viscosity or entropy solutions commonly used to select the
physically-relevant weak solution to hyperbolic PDEs.
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Work has already been done by Fetecau, Kovacic and Topaloglu in [19] to examine
the regularizing effect of adding nonlinear diffusion to (1.14), which results in a PDE with
associated energy

Eν,m[µ] = K[µ] + νSm[µ] + V[µ] (1.33)

where the Gibbs-Boltzmann entropy S[µ] has been replaced with

Sm[µ] :=


∫
D

ρm(x)
m− 1 dx, µ ∈ Pac(D) with dµ(x) = ρ(x) dx

+∞, otherwise
(1.34)

for m > 1. Some results from [19] include

(i) Existence of global minimizers of Eν,m.

(ii) Zero-diffusion limit for finite times: µνt
∗−−−⇀

ν→0
µt for a.e. t ∈ [0, T ] along with explicit

convergence rate.

(iii) Zero-diffusion limit for energy minimizers: let {µν∞}ν>0 denote minimizers of the
energies {Eν,m}ν>0. Then µν∞

∗−−−⇀
ν→0

µ∞ ∈ P(D) where µ∞ is a minimizer of E0.

These and many other insightful results concerning swarm equilibria in domains with bound-
aries and subsequent regularization by nonlinear diffusion can be found in Mitchell Kovacic’s
doctoral dissertation [24], which has inspired us to consider more closely the model with
linear diffusion.

There are advantages and disadvantages of regularizing the plain aggregation model with
nonlinear versus linear diffusion. For nonlinear diffusion, solutions have compact support
and the energy Eν,m is more amenable to analysis, as Sm is bounded below, which is not
the case for S. The primary benefit of modeling with linear diffusion, on the other hand, is
the stochastic particle interpretation (1.22), which allows for numerical simulation in higher
dimensions and general geometries via particle methods. Stochastic particle systems also
directly relate back to physical swarms, where randomness is often inherent: a good example
of this is the run-and-tumble motion of bacteria. For this reason, we focus on regularization
by linear diffusion in this thesis, and specifically extend results (i) and (ii) above to this case.

As we will see below, the regularizing effect of linear diffusion is quite volatile. Specif-
ically, due to the fact that S is not bounded below on P(D), it is always energetically
favourable for mass to spread and fill the entire domain under the gradient flow of S.
As such, a delicate balance must be struck between the aggregation energy K and Gibbs-
Boltzmann entropy S to guarantee existence of global minimizers, and often a confining
external potential V is necessary to prevent metastable translation of the swarm. In Chap-
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ter 2 we address these problems and arrive at conditions for existence versus non-existence
of minimizers.

1.5 Thesis Contributions

Having introduced the models, energy framework and motivation, we now state the
contributions of this thesis. The following chapters are devoted to:

(Ch. 2) Establishing existence and non-existence criteria for global minimizers of the en-
ergy Eν in general domains D ⊂ Rd.

(Ch. 3) Introducing numerical methods for computing critical points of Eν and motivating
future work through numerical examples.

(Ch. 4) Numerically verifying the rate of convergence in the W∞ metric as the empirical
measure µν,Xt approaches µXt in the ν → 0 limit, work which was recently sub-
mitted for publication in [17] in collaboration with Razvan Fetecau, Hui Huang
and Weiran Sun.

In the final chapter we discuss open problems and future directions.
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Chapter 2

Critical Points of the Energy

In this chapter we establish conditions for the existence and nonexistence of global
minimizers of Eν for ν > 0, extending results from free space recently proven by Carrillo,
Delgadino and Patacchini in [10] to general domainsD. Throughout this chapter we consider
only absolutely continuous measures and so the energy Eν is defined

Eν [µ] = 1
2

∫
D

∫
D
K(x− y) dµ(x) dµ(y) + ν

∫
D

log(ρ(x)) dµ(x) +
∫
D
V (x) dµ(x) (2.1)

where dµ(x) = ρ(x) dx. First we derive the Euler-Lagrange equation satisfied by critical
points of the energy Eν along with some interesting properties of minimizers. We then
compare and contrast the existence conditions in Rd and more general domains, presenting
examples domains for which the results in free space do not generalize and providing new
conditions for existence. Because measures are assumed to be absolutely continuous, we
will often refer only to their densities.

Throughout this chapter we will assume the following about potentials K and V and
the domain D.

Assumption 1 (Potentials).

(i) (Local integrability) K,V ∈ L1
loc(Rd).

(ii) (Lower semicontinuity) K and V are lower semicontinuous.

(iii) (Symmetry of K) K(x) = K(−x) for all x ∈ Rd.

(iv) (Boundedness of K away from origin) For all 0 < r < R < +∞, K is bounded on
BR(0) \Br(0).

(v) (Power-law growth of K) There exist constants pK ≥ 0, RK > 0 and CK > 0 such
that

0 ≤ K(x) ≤ CK |x|pK for all |x| > RK .
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Assumption 2 (Domain).

(i) (Domain topology) D ⊂ Rd is closed, connected, and d-dimensional (i.e. |D| > 0).

(ii) (Boundary regularity) There exists a unique outward normal vector n(x) associated
to each x ∈ ∂D .

(iii) (Interior ball condition, see Figure 2.1) There exists a constant αD > 0 such that for
all x ∈ ∂D

BαD(x− αDn(x)) ⊂ D.

Figure 2.1: Illustration of the interior ball condition. In words, at every point x ∈ ∂D, a
ball of radius αD touching the boundary at x can fit inside the domain.

2.1 Euler-Lagrange Equation

The Euler-Lagrange equation is a classical tool in the calculus of variations to character-
ize, and in our case define, critical points of energy functionals. In the aggregation-diffusion
community, it is well known that critical points of the energy Eν in free space satisfy the
Euler-Lagrange equation (2.3) below. This is derived by Balagué, Carrillo, Laurent and
Raoul in [2] under the W2 metric for Eν without diffusion, and by Carrillo, Delgadino and
Patacchini in [10] under theW∞ metric for Eν with general diffusion. For lack of a reference
for its derivation in the present context, we include a derivation of (2.3) here under general
Wp metrics for Eν with linear diffusion and over general domains D, using the techniques in
[2] and [10]. Equation (2.3) is then used throughout this chapter to prove existence results
and in Chapter 3 to numerically calculate critical points.
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First, we wish to highlight the crucial property that minimizers of Eν for every ν > 0
are supported on the whole domain D. This is briefly mentioned in [10] for free space
and is justified by the authors using the Euler-Lagrange equation. We wish to prove this
property before deriving (2.3) because there is no reason a priori why in general domains
D a minimizer ρ should simultaneously satisfy equation (2.3) and supp (ρ) = D.

We use the following lemma to prove Theorems 2.2 and 2.3.

Lemma 2.1. [32, Ch. 6] For all p ∈ [1,∞], x0 ∈ D and µ, η ∈ Pp(D),

Wp
p (µ, η) ≤ 2(p−1)

∫
D
|x− x0|pd|µ− η|(x).

Theorem 2.2. Assume that ρ ∈ Pacp (D) is a Wp-r local minimizer of Eν where p ∈[
max {1, pK} ,∞

]
. Then supp (ρ) = D.

Proof. We proceed by contradiction. Let ρ be a Wp-r local minimizer and assume to
the contrary that supp (ρ) ( D. By definition, supp (ρ) is a closed subset of D, hence
D \ supp (ρ) must have positive Lebesgue measure. This implies that there exists a point
x0 ∈ ∂ supp (ρ) and δ > 0 such that the set A = Bδ(x0) ∩

(
D \ supp (ρ)

)
has positive

Lebesgue measure |A|. We now construct a measure η with Wp(ρ, η) < r such that Eν [η] <
Eν [ρ], contradicting the assumption that ρ is a Wp-r local minimizer of Eν . Define

η = (1− α)ρ+ α
1
|A|

1A

where α ∈ (0, 1) will be picked in two stages.

First, using Lemma 2.1 we have

Wp
p (ρ, η) ≤ 2(p−1)

∫
D
|x− x0|p d|ρ− η|(x)

= α 2(p−1)
(∫

D
|x− x0|p dρ(x) + 1

|A|

∫
A
|x− x0|p dx

)
≤ α 2(p−1)

(
Mx0
p (ρ) + δp

)
,

and so we choose
α < min

{
1, rp

2(p−1) (Mx0
p (ρ) + δp)

}
(2.2)

to ensure that Wp(ρ, η) < r.

Next, we find an additional constraint on α to ensure that Eν [η] < Eν [ρ] by bounding terms
in the energy. For any x ∈ R we have (1− α)2x < x+ 2α|x|, and so a direct calculation of
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the interaction energy yields the bound

K[η] = (1− α)2K[ρ] + α(1− α)
|A|

∫
D

(∫
A
K(x− y)dy

)
ρ(x) dx+ α2

2|A|2
∫
A

∫
A
K(x− y) dxdy

< K[ρ] + α

2 |K[ρ]|+ 1
|A|

∫
D

(∫
A
|K(x− y)| dy

)
ρ(x) dx︸ ︷︷ ︸

=: I

+ 1
2|A| ‖K‖L1(B2δ(0))

 .
The integral I is finite independently of α, and hence so is the entire expression in paren-
theses, due to the power-law growth and local integrability of K (Assumptions 1.i and 1.v
above) together with the fact that ρ has finite pK -th moment. Indeed, fixing R > RK + 2δ,
we partition the integral to get

I =
∫
BR(x0)∩D

(∫
A
|K(x− y)| dy

)
ρ(x) dx+

∫
BcR(x0)∩D

(∫
A
|K(x− y)| dy

)
ρ(x) dx

≤
(
‖K‖L1(BR+δ(0))

) ∫
BR(x0)∩D

ρ(x) dx+ CK |A|
∫
BcR(x0)∩D

(|x− x0|+ δ)pK ρ(x) dx

≤ ‖K‖L1(BR+δ(0)) + CK |A|
(

1 + δ

R

)p
K

Mx0
p
K

(ρ)

which is finite. From this bound we have that for some C > 0 independent of α,

K[η] < K[ρ] + αC.

For the entropy, since A ∩ supp(ρ) = ∅ we have

S[η] = (1− α)
∫
D
ρ(x) log((1− α)ρ(x)) dx+ α

|A|

∫
A

log
(
α

|A|

)
dx

= (1− α)S[ρ] + (1− α) log(1− α) + α log
(
α

|A|

)
< (1− α)S[ρ] + α log

(
α

|A|

)
= S[ρ] + α

(
−S[ρ] + log

(
α

|A|

))
.

Together this allows us to bound the difference in energy as follows:

Eν [η]− Eν [ρ] < α

(
C − νS[ρ] + ν log

(
α

|A|

)
− V[ρ] + 1

|A|

∫
A
V (x) dx

)
,

Now, choosing α such that

α < |A| exp
(
−C
ν

+ S[ρ] + 1
ν
V[ρ]− 1

ν|A|

∫
A
V (x) dx

)
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along with the constraint (2.2), we see by the monotonicity of the logarithm that

Eν [η] < Eν [ρ].

Since η has lower energy than ρ and lives in the ball Bp (ρ, r), ρ cannot be a Wp-r local
minimizer, giving us the desired contradiction. Thus, the support of ρ must be the entire
domain D.

We now derive the Euler-Lagrange equation.

Theorem 2.3. Assume that ρ ∈ Pacp (D) is a Wp-r local extremizer of Eν where p ∈[
max {1, pK} ,∞

]
. Then there exists a constant λ ∈ R such that

K ∗ ρ(x) + ν log(ρ(x)) + V (x) = λ for ρ-a.e. x ∈ D. (2.3)

Proof. Without loss of generality, assume ρ is a Wp-r local minimizer (the case where ρ is
a maximizer follows similarly by reversing the following inequality). As in [10], it follows
that

d

dt
Eν [ρ+ t(η − ρ)]

∣∣∣∣∣
t=0

≥ 0

for all η ∈ Bp (ρ, r). From this a direct calculation then yields∫
D

(K ∗ ρ+ ν log(ρ) + V ) dη ≥
∫
D

(K ∗ ρ+ ν log(ρ) + V ) dρ. (2.4)

We now construct a suitably general η to deduce (2.3). Choose φ in L∞(D; ρ) ∩ L1(D; ρ)
and define

η = ρ+ ε

(
φ−

∫
D
φdρ

)
ρ

where ε will be chosen such that η ∈ Bp (ρ, r). It is clear that η(D) = 1. To ensure that
η ≥ 0 and hence η ∈ Pp(D), it suffices to pick ε ≤ 1

2‖φ‖∞
. Another application of Lemma

2.1 gives

Wp
p (ρ, η) ≤ 2p−1

∫
D
|x|p d|ρ− η|

= ε 2p−1
∫
D
|x|p

∣∣∣∣φ− ∫
D
φdρ

∣∣∣∣ dρ
≤ ε 2p ‖φ‖∞Mp(ρ)

and so Wp(ρ, η) < r provided

ε < min
{

rp

2p ‖φ‖∞Mp(ρ) ,
1

2 ‖φ‖∞

}
,
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which guarantees that η ∈ Bp (ρ, r). Substituting η into (2.4) then gives us∫
D

(
φ−

∫
D
φdρ

)
(K ∗ ρ+ ν log(ρ) + V ) dρ ≥ 0.

The above calculations work for both φ and −φ, hence upon multiplying by −1 we see that∫
D

(
φ−

∫
D
φdρ

)
(K ∗ ρ+ ν log(ρ) + V ) dρ = 0.

Now, by setting φ = 1B for any Borel set B ⊂ supp (ρ) with ρ(B) > 0, we further have

1
ρ(B)

∫
B

(K ∗ ρ+ ν log(ρ) + V ) dρ =
∫
D

(K ∗ ρ+ ν log(ρ) + V ) dρ. (2.5)

From this we deduce (2.3) by contradiction. Define

Λ(x) := K ∗ ρ(x) + ν log(ρ(x)) + V (x) (2.6)

and assume that Λ is not constant ρ-a.e. Then there exists λ∗ ∈ R such that the sets
B1 = {Λ < λ∗} and B2 = {Λ > λ∗} satisfy ρ(B1) > 0 and ρ(B2) > 0. Using B = B1 and
B = B2 in (2.5) then gives us

λ∗ >

∫
D

Λ(x) dρ and λ∗ <

∫
D

Λ(x) dρ,

respectively, which is a contradiction, thus Λ must be constant ρ–a.e. This completes the
proof.

2.1.1 Fixed-Point Characterization

The Euler-Lagrange equation (2.3) can be recast in the following way if the critical point
ρ satisfies supp (ρ) = D. Solving for ρ using the logarithm we have

ρ(x) = 1
Z(ρ) exp

(
−K ∗ ρ(x) + V (x)

ν

)
where

Z(ρ) :=
∫
D

exp
(
−K ∗ ρ(x) + V (x)

ν

)
dx. (2.7)

By integrating (2.3) against dρ(x), we can also identify the constant λ as

λ = Eν [ρ] +K[ρ] = −ν log (Z(ρ)) .

This motivates the following corollary which will be used below.
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Corollary 2.4. Let ρ ∈ Pac(D) have supp (ρ) = D. Then ρ satisfies (2.3) if and only if ρ
is a fixed point of the map T : P(D)→ Pac(D) defined by

T (µ) = 1
Z(µ) exp

(
−K ∗ µ(x) + V (x)

ν

)
(2.8)

for Z defined in (2.7).

Remark 2.5. With no interaction forces (i.e. K = 0), (2.8) is the well-known Gibbs density

ρG(x) = Z−1 exp
(
−V (x)

ν

)
which arises in statistical mechanics as the stationary state of the linear, local Fokker-Planck
equation

∂

∂t
ρ = ∇ · (ρ∇V ) + ν∆ρ.

Equations of this type were the first to be analyzed using Wasserstein gradient flow theory,
for instance in the seminal work by Jordan, Kinderlehrer and Otto in [22] which proved,
among other things, that weak solutions to the heat equation ρt = ∆ρ are gradient flows of
the entropy S on the Wasserstein space

(
P2(Rd),W2

)
. This providing novel justification for

the notion that diffusion maximizes entropy. In our nonlocal scenario, we recover a similar
stationary state as the Gibbs density, but in the form of a nonlinear integral equation (2.8)
which has a possibly infinite number of solutions. It is this equation that we discretize in
Chapter 3 for numerical computation of critical points.

2.2 Non-Existence of Global Minimizers

Here we establish conditions for non-existence of global minimizers of Eν in general
domains D. This is broken into the two cases: (1) non-existence as a result of Eν being
unbounded from below and (2) non-existence despite Eν having a finite lower bound. In the
former case, non-existence follows immediately from the lower semicontinuity of the energy,
and results from an imbalance between aggregative and diffusive forces. In the latter case,
non-existence is more subtle and results entirely from domain asymmetries.

2.2.1 Imbalance of Forces

Physically, Eν is not bounded below if there is an imbalance between diffusive and ag-
gregative forces. If the attraction imparted by K is too weak, diffusion dominates and the
swarm may spread infinitely throughout the domain, eventually reaching zero everywhere.
If attraction is too strong, the swarm may contract onto a discrete set of points. Theorem
2.6 below covers both infinite spreading and infinite contraction and is a direct extension
to general domains D of the non-existence results in free space recently proven by Carrillo,

22



Delgadino and Patacchini in [10]. For the infinite spreading case, we use a similar technique
as in [10] and explicitly construct a sequence of probability measures on D which vanishes
and lowers the energy to −∞. For the case of infinite contraction, results are the same as
in free space, and we refer readers to [10] for details.

Theorem 2.6. Let Assumptions 1 and 2 hold with V = 0. Then the energy Eν is not
bounded below on P(D) provided either

lim sup
r→∞

(
1
2 sup
x∈B2r

∇K(x) · x− ν
)
< 0 if |D| = +∞ (2.9)

or
lim inf
r→0

(1
2 inf
x∈B2r

∇K(x) · x− νd
)
> 0. (2.10)

Conditions (2.9) and (2.10) above are given in the same form as they appear in [10] for
direct comparison to the results in free space. The following lemma provides more intuitive
conditions which are used in the proof.

Lemma 2.7. Condition (2.9) implies that there exists δ0 with −ν < δ0 < 0, C0 ∈ R and
R0 > 0 such that

K(x) ≤ 2(δ0 + ν) log |x|+ C0, |x| ≥ R0, (2.11)

while condition (2.10) implies that there exists δ1 > 0, C1 ∈ R and R1 > 0 such that

K(x) ≤ 2(δ1 + νd) log |x|+ C1, |x| ≤ R1, (2.12)

Proof. Both expressions in parenthesis of (2.9) and (2.10) are monotonically increasing in
their respective limits in r. From this we are able to relax the lim sup and lim inf to regular
limits. In the case of (2.9), this guarantees the existence of δ0 with −ν < δ0 < 0 and R′ > 0
such that for all r > R′,

1
2 sup
x∈B2r

∇K(x) · x− ν ≤ δ0,

or
∇K(x) · x ≤ 2(ν + δ0) for all |x| > 2R′. (2.13)

Now take arbitrary x ∈ Rd with |x| > 2R′ and let x̃ = su for u = x
|x| where 2R′ < s ≤ |x|.

From (2.13) we then have

d

ds
K(su) = 1

s
∇K(su) · su = 1

s
∇K(x̃) · x̃ ≤ 2(ν + δ0)

s
.
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Integrating in s from 2R′ to |x| and letting R0 = 2R′, we get the desired estimate (2.11)
with

C0 = max
|y|=R0

K(y)− 2(δ0 + ν) log(R0).

Using similar logic, we show (2.12). Since the lim infr→0 reduces to a limr→0, there exists
δ1 > 0 and R′′ > 0 such that for all r < R′′ we have

1
2 inf
x∈B2r

∇K(x) · x− ν ≥ δ1

or
∇K(x) · x ≥ 2(ν + δ1) for all x ∈ B2R′′ . (2.14)

Using the same line-integral argument, we deduce (2.12) where R1 = 2R′′ and

C1 = max
|y|=R1

K(y)− 2(δ1 + νd) log(R1).

We now prove the non-existence result.

Proof of Theorem 2.6. We will focus on the spreading case (2.9). Let {BαD(xi)}∞i=1 be a
sequence of disjoint balls contained in D such that the finite union Bn := ∪ni=1 BαD(xi)
satisfies

sup
x,y∈Bn

|x− y| ≤ 2nαD (2.15)

for each n. This construction is always possible if D is an unbounded domain satisfying
the interior sphere condition in Assumption 2. For instance, (2.15) turns into an equality if
the collection of balls lie adjacent on a ray with xi = (2i−1)αDy for some fixed y with |y| = 1.

Define Bi := BαD(xi) for convenience. Without loss of generality we may assume that
BαD(0) ⊂ D, and so we let x1 = 0 such that B1 := BαD(0). Since Bi ∩ Bj = ∅ we have
|∪ni=1Bi| = nαd

D
ωd, where ωd is the volume of the d-dimensional unit ball, hence we may

define the sequence of probability measures {µn}∞n=1 by

µn = 1
nαd

D
ωd

n∑
i=1

1Bi .

The energy of each µn is then

Eν [µn] = 1
2(nαd

D
ωd)2

n∑
i,j=1

∫
Bi

∫
Bj

K(x− y) dx dy − ν log
(
nαd

D
ωd
)
.
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By defining u = xi − xj , the pairwise interactions between balls in the finite set {Bi}ni=1
can be rewritten using∫

Bi

∫
Bj

K(x− y) dx dy =
∫
B1

∫
B1
K(x− (y − u)) dx dy.

Taking R0 as in Lemma 2.7, we now split the sum of pairwise interactions into so-called
“near-field” and “far-field” interactions, where near-field interactions are those between Bi
and Bj such that dist (Bi, Bj) < R0, where

dist (A,B) := inf
x∈A,y∈B

|x− y|,

and the remaining interactions are far-field. From this partitioning we can use Lemma 2.7
to provide an upper bound on the interaction portion of Eν [µn] which is uniform in n and
then show that the diffusion portion ultimately dominates, sending the energy to −∞.

To achieve such an upper bound, we bound above the number of possible near-field and
far-field interactions simultaneously for each Bi. All near-field interactions for a fixed Bi

take place within the ball BR0+αD(xi), hence the maximum number of near-field interactions
is bounded above by the volume ratio

|BR0+αD(0)|
|BαD(0)| = (R0 + αD)dωd

αd
D
ωd

=
(
R0
αD

+ 1
)d
.

For the far-field, we simply bound the number of far-field interactions for each Bi above by
n. Using these bounds, we have

n∑
i,j=1

∫
Bi

∫
Bj

K(x− y) dx dy ≤ n
(
R0
αD

+ 1
)d(

sup
|u|≤R0+2αD

∫
B1

∫
B1
K(x− (y − u)) dx dy

)

+ n2
(

sup
R0+2αD≤|u|≤2(n−1)αD

∫
B1

∫
B1
K(x− (y − u)) dx dy

)

≤ C̃n+ (αd
D
ωd)2

(
sup

R0<|x|≤2nαD
K(x)

)
n2
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where C̃ is finite due to the local integrability of K and independent of n. Substituting this
into the energy and using Lemma 2.7 gives us

Eν [µn] ≤ C̃

2n (αd
D
ωd)2 + 1

2

(
sup

R0<|x|≤2nαD
K(x)

)
− ν log

(
nαd

D
ωd
)

≤ C̃

2n (αd
D
ωd)2 + (δ0 + ν) log(2nαD) + 1

2C0 − ν log
(
nαd

D
ωd
)

≤ (δ0 + ν) log(nαD)− ν log (nαD) +A

= δ0 log(nαD) +A

where A is a constant independent of n. Since δ0 < 0, we have

lim
n→∞

Eν [µn] = −∞

which shows that the energy is not bounded below in the spreading case of (2.9).

As mentioned above, the proof of the case (2.10) of infinite contraction is shown in
[10] and needs no modification for general domains. This is because the limiting sequence
constructed in [10] to send Eν → −∞ involves the contraction of a ball to a single point,
which can be done in any d-dimensional domain D.

Remark 2.8. There is a subtle difference in the spreading case between general domains
and free space. In free space, spreading occurs if K grows more slowly than 2νd log |x|
as |x| → ∞, while in general domains we have shown that spreading occurs only if K
grows more slowly than 2ν log |x| (see (2.9) and (2.11)), which is clearly more restrictive in
higher dimensions than the free-space bound. This reflects the fact that when the domain
D confines the swarm in such a way that spreading can only “effectively” occur in fewer
dimension (e.g. when D is an infinite tube spreading effectively occurs in one dimension),
diffusion must work harder to overcome the attraction forces, and so weaker attraction
results in infinite spreading. We are currently attempting to utilize this property to achieve
a tight bound of the form K . 2νd̃ log |x| for characterizing infinite spreading in general
domains, where d̃ characterizes the “effective” number of dimensions in which the domain
extends to infinity.

2.2.2 Domain Asymmetries

To exhibit the role played by domain geometry in determining existence of global min-
imizers, we briefly review existence results in free space when V = 0. When D = Rd and
V = 0, existence of a global minimizer is guaranteed as soon as the energy is bounded below,
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which is conveyed in the following theorem, reproduced here for the sake of discussion. As
we will show, this is not the case in domains with boundaries.

Theorem 2.9. [10, Thm 6.1] Suppose K ∈ L1
loc(Rd) is positive, lower semicontinuous and

symmetric, and V = 0. Then there exists µ∞ ∈ P(Rd) such that

Eν(µ∞) = inf Eν > −∞

provided
lim inf
|x|→∞

∇K(x) · x > 2dν. (2.16)

The hypotheses in Theorem 2.9 have natural physical interpretations. Enforcing that
K is positive excludes potentials such as K(x) = − 1

|x| which produce an infinite well of
(pairwise) attraction at the origin. This is needed to prevent infinite contraction of the
swarm onto δ-aggregations. We then have the constraint (2.16), which is shown in [10] to
imply

K(x) ≥ 2νd
1− δ log |x|+ C (2.17)

for some δ ∈ (0, 1/2) and C ∈ R, similar to Lemma 2.7. (Note that (2.17) holds for ev-
ery x ∈ Rd by the positivity of K). By requiring that K grow at least logarithmically as
|x| → ∞, the case of infinite spreading is prevented. In words, Theorem 2.9 says that in free
space, if the two force-imbalance pathologies from the previous subsection are prevented,
then existence of a global minimizer is guaranteed.

We sketch the proof of Theorem 2.9 here, as the following crucial lemmas will be used
in the existence proofs in the next section.

Lemma 2.10. [10, Section 2.2] Assume that K and V are both lower semicontinuous, that
is for all x0 ∈ Rd,

lim inf
x→x0

K(x) ≥ K(x0) and lim inf
x→x0

V (x) ≥ V (x0).

Then Eν is weakly-* lower semicontinuous, that is for any sequence {µn}n≥0 ⊂ P(D) such
that µn

∗
⇀ µ ∈ P(D), it holds that

lim inf
n→∞

Eν [µn] ≥ Eν [µ].

Lemma 2.11. (Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality [10, Lemma 2.6])
Let ρ ∈ Pac(Rd) satisfy log(1 + | · |2)ρ ∈ L1(Rd). Then there exists C0 ∈ R depending only
on d such that

−
∫
Rd

∫
Rd

log(|x− y|)ρ(x)ρ(y) dx dy ≤ 1
d

∫
Rd
ρ(x) log(ρ(x)) dx+ C0. (2.18)
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Lemma 2.12. [10, Lemma 2.9] Let K(x) ∈ L1
loc(Rd) be positive, symmetric and satisfying

lim
|x|→∞

K(x) = +∞.

Given a sequence {µn}n∈N ⊂ P(Rd), if

lim inf
n→∞

∫
Rd

∫
Rd
K(x− y) dµn(x) dµn(y) <∞,

then {µn}n∈N is weakly-* relatively compact up to translations.

To prove Theorem 2.9 the authors of [10] first use the logarithmic HLS inequality (2.18)
together with the estimate (2.17) to show that Eν is bounded below on P(Rd). It is then
deduced from Lemma 2.12 that any minimizing sequence of Eν is weakly-* relatively com-
pact up to translation and so admits a subsequence which converges to some ρ ∈ P(D).
Finally, since K is assumed to be lower semicontinuous, by Lemma 2.10 the energy Eν is
also lower semicontinuous, and so ρ must realize the infimum of Eν .

In general domains D, boundedness from below of the energy and subsequent tightness-
up-to-translation arguments are not enough to guarantee existence of a minimizer. This is
shown in the following theorem, where (2.16) is clearly satisfied, hence inf Eν > −∞, yet no
energy minimizer exists for V = 0. It is then shown that, for any g > 0, adding a confining
external potential of the form V = gx enforces the existence of a unique critical point.

Theorem 2.13. Let D = [0,+∞), K(x) = 1
2x

2 and V (x) = gx for g ≥ 0. We then have
the following for any ν > 0:

(i) If g = 0, then the energy Eν has no minimizers.

(ii) For any g > 0, there exists a unique critical point ρ for Eν in the space of measures
Pac2 (D) having support equal to D.

Proof. The energy is given by

Eν [ρ] = 1
4

∫ ∞
0

∫ ∞
0

(x−y)2 ρ(x)ρ(y) dx dy+ν

∫ ∞
0

ρ(x) log(ρ(x)) dx+g

∫ ∞
0

xρ(x) dx. (2.19)

(i) Let g = 0. We proceed by contradiction. Assume that a minimizer ρ ∈ Pac2 (D) of (2.19)
exists. Then ρ has supp (ρ) = D by Theorem 2.2 and satisfies the Euler-Lagrange equation
(2.3), and so by Corollary 2.4,

ρ(x) = Z−1 exp
(
−K ∗ ρ(x)

ν

)
where

Z =
∫ ∞

0
exp

(
−K ∗ ρ(x)

ν

)
dx.
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From an elementary calculation,

K ∗ ρ(x) = 1
2

∫ ∞
0

(x− y)2ρ(y) dy

= 1
2(x−M1(ρ))2 − 1

2
(
M1(ρ)2 −M2(ρ)

)
,

hence ρ = ρc for some c ∈ R, where

ρc(x) = A(c) exp
(
− 1

2ν (x− c)2
)

is a shifted and truncated Gaussian. Here c = M1(ρ) and A(c) is the normalization constant1

A(c) = 2/
√

2πν
1 + erf(c/

√
2ν)

.

Let Γc = {ρc}c≥0 be the family of shifted and truncated Gaussians on [0,+∞). Then since
ρ ∈ Γc and ρ is a critical point of Eν over P(D), ρ is a critical point of Eν over Γc as well,
and so the function c→ Eν [ρc] has a critical point at some c ∈ R. By direct calculation of
Eν [ρc], we now show that no such critical point exists.

For the entropy, we have

S[ρc] = A(c)
∫ ∞

0
exp

(
− 1

2ν (x− c)2
)(
− 1

2ν (x− c)2 + log(A(c))
)
dx

= log(A(c))− 1
2ν A(c)

∫ ∞
0

(x− c)2 exp
(
− 1

2ν (x− c)2
)
dx︸ ︷︷ ︸

I

.

1For reference,

erf(a) = 2√
π

∫ a

0
e−y

2
dy.
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For the interaction energy, we get

K[ρc] = 1
4A(c)2

∫ ∞
0

∫ ∞
0

(x− y)2 exp
{
− 1

2ν (x− c)2 − 1
2ν (y − c)2

}
dx dy

= 1
2 A(c)

∫ ∞
0

(x− c)2 exp
(
− 1

2ν (x− c)2
)
dx︸ ︷︷ ︸

I

===−1
2

[
A(c)

∫ ∞
0

(x− c) exp
(
− 1

2ν (x− c)2
)
dx

]2

= 1
2I −

ν2

2

(
A(c) exp

(
− c

2

2ν

))2

.

The total energy Eν [ρc] then reduces to

Eν [ρc] = K[ρc] + νS[ρc]

= ν log(A(c))− ν2

2

(
A(c) exp

(
− c

2

2ν

))2

= ν log
( 2√

2πν

)
− ν log

(
1 + erf

(
c√
2ν

))
− ν

4


2√
π

exp
(
− c

2

2ν

)

1 + erf
(

c√
2ν

)


2

,

or letting c̃ = c/
√

2ν,

Eν [ρc] = ν log
( 2√

2πν

)
− ν

(
f(c̃) + 1

4f
′(c̃)2

)
(2.20)

where
f(c̃) = log (1 + erf(c̃)) .

Then, since c→ Eν [ρc] has a critical point and is a smooth function, we have

d

dc
Eν [ρc] = −

√
ν

2f
′(c̃)

(
1 + 1

2f
′′(c̃)

)
= 0 (2.21)

for some c̃ ∈ R. Since f ′ > 0 and min f ′′ = − 4
π > −2, however, (2.21) has no solutions.

This contradicts the assumption that Eν has a critical point.

(ii) Now choose g > 0. We proceed as before, only in terms of fixed points of the map T (ρ)
defined in (2.8). Borrowing from the calculations above, for any ρ ∈ Pac2 (D) we have

T (ρ) = Z−1 exp
(
−K ∗ ρ(x) + V (x)

ν

)
= A(c) exp

(
− 1

2ν (x− c)2
)
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where now c = M1(ρ) − g. Since T maps Pac2 (D) into Γc, by Corollary 2.4 it suffices to
look for critical points in Γc. We then proceed as above and first attempt to satisfy the
necessary condition d

dcE
ν [ρc] = 0. With g > 0 the energy (2.20) becomes

Eν [ρc] = ν log
( 2√

2πν

)
− ν

(
f(c̃) + 1

4f
′(c̃)2

)
+ g

(√
ν

2f
′(c̃) +

√
2ν c̃

)

whereby solving d
dcE

ν [ρc] = 0 reduces to finding a root c̃ to(√
2
ν
g − f ′(c̃)

)(
1 + 1

2f
′′(c̃)

)
= 0.

From (2.21), we know that the second term is strictly positive, so we may divide by it and
further reduce the problem to solving

f ′(c̃) =
√

2
ν
g. (2.22)

For any g, ν > 0, (2.22) has a unique solution since f ′ : R → [0,∞) is smooth and mono-
tonically decreasing, so we have that there exists a unique candidate critical point ρc∗ ∈ Γc
where c∗√

2ν solves (2.22). The measure ρc∗ is then a critical point of Eν over the space Γc.
All that remains is to show that T (ρc∗) = ρc∗ to conclude that ρc∗ is in fact a critical point
of Eν over all of Pac2 (D). Indeed, since T maps into Γc, we have T (ρc∗) = ρc′ ∈ Γc for some
c′ ∈ R, and by direct calculation,

c′ = M1(ρc∗)− g =
√
ν

2f
′
(
c∗√
2ν

)
+ c∗ − g = c∗,

since c∗√
2ν solves (2.22). This shows that ρc′ = ρc∗ since every member in Γc is uniquely

determined by its shift c. This completes the proof.

Remark 2.14. For g = gc :=
√

2ν
π , the solution c to (2.22) is exactly c = 0, which says

that the critical point ρ is exactly a half-Gaussian, and for g ≥ gc, the peak of ρ lies at
x = 0. We verify this numerically in Chapter 3, Figure 3.1.

The non-existence result (i) in Theorem 2.13 is an example of a more general phe-
nomenon which we refer to as the escaping mass phenomenon. The name is in contrast to
Lions’ concentration compactness lemma [25], which states that any sequence {µn}n∈N of
probability measures on Rd contains a subsequence which is either (i) tight up to transla-
tions, (ii) vanishing or (iii) splitting. We will not go into the details of these cases here, but
only say that in general domains D, it happens that minimizing sequences {µn}n∈N of Eν

can be of an entirely different breed: they can be escaping in the sense that the centre of
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mass C (µn), defined for µ ∈ P1(D) by

C (µ) =
∫
D
x dµ(x),

reaches infinity without the measures actually vanishing. The sequence Γc of shifted and
truncated Gaussians in Theorem 2.13 is one such escaping sequence. Dynamically, the es-
caping mass phenomenon manifests as a persistent, metastable translation of the centre of
mass of the swarm (see Remark 2.17).

Analytically, asymmetries in D cause the energy Eν to lose translation invariance, and
so the same tight-up-to-translations arguments from free space do not apply. To enforce
the existence of a global minimizer, we can add a confining potential V and exploit any
symmetries within D. This process is described in Theorems 2.18 and 2.19. To complete
the discussion on escaping mass, Theorem 2.15 below provides a necessary condition for the
existence of a minimizer in the case of radial K which comes as a direct corollary of the
Euler-Lagrange equation.

Theorem 2.15. Let Assumptions 1 and 2 be satisfied and let K,V ∈ W 1,1
loc (D) with K

radial. Then if ρ is a critical point of the energy Eν with supp (ρ) = D, then ρ satisfies

ν

∫
∂D

n(x)ρ(x) dS(x) = −
∫
D
ρ(x)∇V (x) dx, (2.23)

where n(x) is the unit normal to the boundary at x ∈ ∂D.

Proof. Assume that ρ is such a critical point. Then from Corollary 2.4 we have that

ρ = Z−1 exp
(
−K ∗ ρ+ V

ν

)
.

Since K is radial and in W 1,1(D), we have K(x) = f(|x|) for some f ∈W 1,1([0,∞)) which
implies that f is absolutely continuous, and hence differentiable almost everywhere. Using
this regularity, we have that ρ is differentiable almost everywhere. Taking the gradient of
both sides of the Euler-Lagrange equation (2.3) and integrating against ρ(x) dx then gives
us

ν

∫
D
∇ρ(x) dx = −

∫
D
ρ(x)∇K ∗ ρ(x) dx−

∫
D
ρ(x)∇V (x) dx,

where the first term on the right-hand side integrates to zero, since∫
D
ρ(x)∇K ∗ ρ(x) dx =

∫
D

∫
D
f ′(|x− y|) · x− y

|x− y|
ρ(x)ρ(y) dx dy = 0.

To integrate the left-hand side we use the divergence theorem. Consider a sequence of
bounded sets An ⊂ D with smooth boundary such that limn→∞An = D and limn→∞ ∂An =
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∂D. Then for any fixed ~a ∈ Rd,

~a ·
∫
An
∇ρ(x) dx =

∫
An
∇· (ρ(x)~a) dx =

∫
∂An

n(x) · (ρ(x)~a) dS(x) = ~a ·
∫
∂An

n(x)ρ(x) dS(x).

Since this holds for any ~a ∈ Rd, we have
∫
An
∇ρ(x) dx =

∫
∂An

n(x)ρ(x) dS(x), and so

∫
D
∇ρ(x) dx = lim

n→∞

∫
An
∇ρ(x) dx = lim

n→∞

∫
∂An

n(x)ρ(x) dS(x) =
∫
∂D

n(x)ρ(x) dS(x).

By Assumption 2.2 on the smoothness of D, we can apply classical trace theorems from [14,
Ch. 5] to conclude that the right-most integral is finite. This yields the result.

Remark 2.16. Theorem 2.15 indicates that minimizers of Eν cannot exist for V = 0 in a
large class of domains (see the Examples section below). This is because when V = 0, the
right-hand side of (2.23) is zero yet the formula

ρ(x) = Z−1 exp
(
−K ∗ ρ(x)

ν

)
implies that ρ(x) > 0 for all x ∈ ∂D, which in turn implies that the left-hand side of (2.23)
is nonzero, and so (2.23) cannot hold.

Remark 2.17. Condition (2.23) relates to the dynamics of the aggregation-diffusion model
(1.20) in the following way. Consider the evolution in time of the centre of mass:

d

dt
C(µνt ) =

∫
D
x

(
∂

∂t
ρνt (x)

)
dx

=
∫
D
x∇ ·

(
ρνt (x)

(
∇K ∗ ρνt (x) +∇V (x)

)
+ ν∇ρνt (x)

)
dx

= −
∫
D
∇K ∗ ρνt (x)ρνt (x) dx−

∫
D
∇V (x)ρνt (x) dx− ν

∫
D
∇ρνt (x) dx

(integrating by parts and utilizing the boundary conditions)

= −
∫
D
∇V (x)ρνt (x) dx− ν

∫
∂D

n(x)ρνt (x) dS(x).

For V = 0, this is exactly

d

dt
C (µνt ) = −ν

∫
∂D

n(x)ρνt (x) dS(x), (2.24)

which says that the swarm translates in the direction opposite the average outward normal
vector with speed proportional to the mass along the boundary, weighted by ν. Unless the
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domain is bounded or symmetric enough that mass may be distributed along the boundary
in such a way that the right-hand side of (2.24) is zero, translation will occur indefinitely,
further justifying the terminology “escaping-mass phenomenon”. Clearly this takes effect as
soon as ν > 0.

Examples

The following are a few example domains where a minimizer ρ cannot exist by the
argument in Remark 2.16.

1. Half-space: Here D = Rd+ := Rd−1 × [0,∞) where n(x) = −êd is constant for all
x ∈ ∂D. This gives∫

∂D
n(x)ρ(x)dS(x) = −êd

∫
Rd−1

ρ(x) dx1 . . . dxd−1 < 0.

Note that Theorem 2.13 demonstrates this case for d = 1.

2. Wedge domain: D =
{
x ∈ R2 : 0 ≤ x2 ≤ tan(φ)x1

}
for φ ∈ (0, π/2). Then∫

∂D
n(x)ρ(x) dS(x) = (N1, N2)

where
N1 = − sin(φ)

∫ ∞
0

ρ(z, tan(φ)z) dz < 0.

3. Paraboloid: Let x = (x1, . . . , xd−1, xd) = (x′, xd) ∈ Rd and define

D =
{
x ∈ Rd : xd ≥ |x′|2

}
.

Then n(x) = 1√
|x′|2 + 1

4

(
x′,−1

2

)
and so

∫
∂D

n(x)ρ(x) dS(x) = (N ′, Nd)

where again Nd cannot be zero.

In the next section we establish a relation between the domain geometry and the external
potential V , motivated by Theorem 2.15, that ensures existence of a minimizer.

2.3 Existence of Global Minimizers

Given the considerations above, in the absence of an external potential V there does
not exist a global minimizer for Eν in many canonical domains, despite Eν being bounded
below. With insight from Theorem 2.15, we present here a recipe for guaranteeing existence
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of a global minimizer through the addition of a suitable external potential V . Recall that
this was done above in the case of K(x) = 1

2x
2 and D = [0,∞) for V (x) = gx. Theorem

2.18 establishes a condition on V (2.26) that is in some sense minimal and that guaran-
tees existence of a global minimizer of Eν for general domains D satisfying Assumption 2.
Theorem 2.19 then provides a weaker set of requirements on V which takes advantage of
symmetries within the domain.

Theorem 2.18. Suppose K and V are positive and satisfy Assumption 1, and that D ⊂ Rd

satisfies Assumption 2. Then there exists a global minimizer ρ ∈ Pac(D) of Eν , that is,

Eν [ρ] = inf
ρ∈P(D)

Eν [ρ] > −∞,

if for some δ ∈ (0, 1/2) and CK ∈ R

K(x) ≥ 2dν
1− δ log |x|+ CK , (2.25)

and V satisfies, for some x0 ∈ D,

lim inf
R→∞

(
inf

x∈BcR(x0)
V (x)

)
= +∞. (2.26)

Proof. We will first show that the energy Eν is bounded below and then prove that mini-
mizing sequences are tight. Indeed, the boundedness from below of Eν follows from results
in free space. By Theorem 2.9 above, relation (2.25) between K and ν is sufficient to guar-
antee that Eν is bounded below over P(Rd) by a constant C ∈ R when V = 0.

Since |D| > 0 and we are not requiring any regularity of measures other than absolute
continuity with respect to Lebesgue measure, from any µ ∈ Pac(D) with density ρ we can
define a measure µ0 ∈ Pac(Rd) with density ρ0(x) by extending ρ by zero:

ρ0(x) =


ρ(x), x ∈ D

0, x ∈ D c.

For each µ ∈ Pac(D) we then have the lower bound

Eν [µ] = 1
2

∫
D

∫
D
K(x− y) dµ(x) dµ(y) + ν

∫
D
ρ(x) log(ρ(x)) dx+

∫
D
V (x) dµ(x)

= 1
2

∫
Rd

∫
Rd
K(x− y) dµ0(x) dµ0(y) + ν

∫
Rd
ρ0(x) log(ρ0(x)) dx+

∫
D
V (x) dµ(x)

> C +
∫
D
V (x) dµ(x),
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which implies ∫
D
V (x) dµ(x) < Eν [µ]− C. (2.27)

Now consider a minimizing sequence {µn}n≥0 ⊂ Pac(D) of Eν . The following argument
shows that {µn}n≥0 is tight. Since {µn}n≥0 is minimizing, we can assume {Eν [µn]}n≥0 is
bounded above; hence (2.27) implies

sup
n

∫
D
V (x) dµn(x) < M (2.28)

for some M ∈ R. Fix ε > 0 and let L > 0 be large enough that M/L < ε. From (2.26), to
L there corresponds an R such that

inf
x∈BcR(x0)

V (x) > L.

For each µn we then have

L

∫
BcR(x0)∩D

dµn(x) ≤
∫
BcR(x0)∩D

V (x) dµn(x) ≤
∫
D
V (x) dµn(x) < M,

hence for the compact set Kε = BR(x0) ∩D,

µn(Kε) > 1− ε.

This shows that the minimizing sequence {µn}n≥0 is tight. By Prokhorov’s theorem we may
then extract a subsequence {µnk}k≥0 which converges in the weak-* topology of measures
to some ρ ∈ P(D). It follows from the weak-* lower semicontinuity of Eν (Lemma 2.10)
that

Eν [ρ] ≤ lim inf
n→∞

Eν [ρn] = lim
n→∞

Eν [ρn] = inf
ρ∈P(D)

Eν ,

and so ρ realizes the infimum.

The previous theorem provides a way to guarantee existence of a minimizer in all do-
mains D satisfying Assumption 2, simply by using an external potential to contain the mass
and enforce tightness. As the following theorem shows, in many domains a less restrictive
external potential is sufficient to ensure a minimizer.

We will need some terminology for the next theorem. Define a band Sia in Rd by

Sia =
{
x ∈ Rd : |xi| < a

}
.
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Also, we define a function f : Rd → Y , where Y is some set, as discrete-translation invariant
in ~u if there exists ~u ∈ Rd such that for any m ∈ Z,

f(x+m~u) = f(x) for all x ∈ Rd.

Theorem 2.19. Let (x1, . . . , xd) be a fixed orthogonal coordinate system for Rd. Suppose
the hypotheses of Theorem 2.18 are satisfied, except that (2.26) is replaced with the following:
for each coordinate xi, at least one of the following holds:

(i) D is bounded in xi.

(ii) V is unbounded in xi of the form

lim inf
a→∞

(
inf

x∈(Sia)c
V (x)

)
= +∞.

(iii) D and V are discrete-translation invariant in siêi for some si > 0.

Then there exists a global minimizer ρ ∈ P(D) of Eν .

Proof. As before, we consider a minimizing sequence {µn}n≥0 ⊂ P(D) for Eν over P(D),
where we assume that {Eν [µn]}n≥0 is bounded above by some M̃ > 0. Again, (2.25) implies
that {Eν [µn]}n≥0 is bounded below, and so the upper bound (2.28) on {V[µn]}n≥0 still holds.

We can no longer extract tightness just from V , however, so we will now exploit the fact
that the interaction portion K of the energy is bounded in order to use Lemma 2.12, from
which it follows that {µn}n≥0 is tight up to translations in free space. With each coordinate
xi satisfying at least (i), (ii) or (iii), this is enough to guarantee the existence of a translated
sequence {µ̃n}n≥0 that lies in P(D) and remains minimizing. With some abuse of notation,
given the discussion in Theorem 2.18, we will use µn to refer interchangeably to a measure
on D and a measure on all of Rd such that µn(Dc) = 0.

To see that the interaction portion of the energy is bounded, we reuse some arguments
from [10]. Namely, the logarithmic HLS inequality together with (2.25) imply that for each
µ ∈ Pac(D) with dµ(x) = ρ(x) dx,

νS[µ] ≥ −νd
∫
Rd

∫
Rd

log(|x− y|)ρ(x)ρ(y) dx dy − νdC0

≥ −1− δ
2

∫
Rd

∫
Rd
K(x− y) dµ(x) dµ(y)− νdC0 + 1− δ

2 C

= −(1− δ)K[µ]− νdC0 + 1− δ
2 C,
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hence for each µn,

δK[µn] ≤ K[µn] + νS[µn] + V[µn] + νdC0 −
1− δ

2 C ≤ Eν [µn] + C̃

which shows that {K[µn]}n≥0 is bounded since supn Eν [µn] < M̃ . By Lemma 2.12 we now
have that {µn}n≥0 is tight up to translations in free space.

We now construct a tight, translated version of {µn}n≥0 that retains the property
µn(D) = 1 and remains energy-minimizing. To do so we address each coordinate xi and
consider the three cases above. Let ε > 0 be given.

(i) For each xi in which D is bounded, let Li = supx∈D |xi| and note that for each n

µn(SiLi) = 1 > 1− ε.

(ii) Similarly, for each xi in which V satisfies

lim inf
a→∞

(
inf

x∈(Sia)c
V (x)

)
= +∞,

there exists Li > 0 such that
µn(SiLi) > 1− ε

uniformly in n by a similar argument as in Theorem 2.18: since {V[µn]}n≥0 is bounded
above by some M > 0, let L be large enough that M/L < ε. Then there exists Li > 0 such
that

inf
x∈
(
SiLi

)c V (x) > L,

hence ∫(
SiLi

)c
∩D

dµn(x) ≤ 1
L

∫(
SiLi

)c
∩D

V (x) dµn(x) ≤ 1
L

∫
D
V (x) dµn(x) < ε.

(iii) Now consider the index set I of coordinates xi for whichD and V are discrete-translation
invariant in siêi for some si > 0. First we note that if D is discrete-translation invariant,
then so are K and S by a change of variables. If V is also discrete-translation invariant,
then so is V, hence for each i ∈ I, the energy Eν is discrete-translation invariant in siêi.

Let
{
µ1
n

}
n≥0 =

{
µn(x− xn,1)

}
n≥0 be a translated sequence which is tight but may no

longer satisfy µ1
n(D) = 1. Without loss of generality we have xn,1i = 0 for i /∈ I using the ar-

guments above for (i) and (ii), so translations have only occurred in coordinates xi for i ∈ I.
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Now define another translated sequence
{
µ2
n

}
n≥0 by

µ2
n := µ1

n(x+ x̃n,1) = µn(x− xn,2)

where the translations are defined by

xn,2 := xn,1 −
d∑
i=1
i∈I

mod
(
xn,1i , si

)
êi := xn,1 − x̃n,1

where

mod
(
xn,1i , si

)
:= xn,1i −

⌊xn,1i
si

⌋
si.

From this we get for each i ∈ I that

xn,2i =
⌊xn,1i
si

⌋
si = mn

i si for some mn
i ∈ Z,

hence by discrete translation invariance,

µ2
n(D) = µn

(
D − xn,2

)
= µn

D − d∑
i=1
i∈I

mn
i siêi

 = µn(D) = 1,

and so
{
µ2
n

}
n≥0 lies in P(D). Similarly,

Eν [µ2
n] = Eν

µn
x− d∑

i=1
i∈I

misiêi


 = Eν [µn],

thus
{
µ2
n

}
n≥0 retains the minimizing property of the original sequence {µn}n≥0. To see that{

µ2
n

}
n≥0 is tight, we can use the fact that

{
µ1
n

}
n≥0 is tight to find a compact set K1

ε ⊂ Rd

for which µ1
n(K1

ε ) > 1− ε for each n. Since∣∣∣xn,2 − xn,1∣∣∣ ≤ √dmax
i∈I

si,

the compact set
K2
ε =

{
x ∈ D : dist

(
x,K1

ε

)
≤
√
dmax

i∈I
si

}
satisfies µ2

n(K2
ε ) > 1 − ε for each n. We may now apply Prokhorov’s theorem and lower

semicontinuity of the energy to extract a convergent subsequence
{
µ2
nk

}
k≥0

such that µ2
nk

∗
⇀

ρ ∈ P(D) and Eν [ρ] = inf Eν > −∞. This completes the proof.

Remark 2.20. Theorem 2.19, although more technical, is designed to capture many prac-
tical cases. As it reads, one such case is that of the half-space domain D = Rd−1 × [0,∞)
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together with a potential V of the form

V (x) = V (xd) ≤ Cxpd

which only depends on the final coordinate. This is the case commonly considered when
modeling a swarm in a gravitational field. Another case is that of an infinite channel
D = Bd−1

R (0) × R where Bd−1
R is a (d − 1)-dimensional ball of radius R centred at zero.

Since the infinite channel is either bounded or translation invariant in each coordinate, a
global minimizer exists for V = 0.

Figure 2.2: Example domains with different requirements on the external potentials for
existence of a global minimizer. Top left: domain with hyperbolic boundaries which does
not offer translation symmetry or boundedness in any coordinate, but for example V = |x|p
satisfies the conditions of Theorem 2.18 for any p > 0 and so grants a minimizer. Top right:
half plane—a minimizer exists under the potential V = gx for any g > 0. Bottom: domain
with periodic boundaries, discrete-translation invariant in x and bounded in y, hence by
Theorem 2.19 a minimizer exists under V = 0.
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Chapter 3

Computation of Critical Points

In this section we introduce two iterative methods for computing critical points of Eν as
well as an implicit-explicit scheme for solving the aggregation-diffusion equation (1.20) on
a bounded domain using finite differences. Using these methods, we perform numerical ex-
periments on a bounded interval. Motivated by Theorems 2.2 and 2.13, we examine purely
attractive potentials and examine the limit of infinite attraction strength at finite distance.
We then look at attractive-repulsive potentials and the formation of states with multiple
separated aggregations. In the former case we believe that a unique critical point exists
(the global minimizer), although we have not yet been able to prove this. In the latter case,
we show directly an example of non-uniqueness of critical points (see Figure 3.6).

For each computed critical point we show that the Euler-Lagrange equation (2.3) is
satisfied, and where applicable, we verify the boundary condition (2.23). We also note
that each critical point computed using the iterative methods below has been verified to be
stationary under the PDE solver; however, we omit this from the figures in below. Together
these criteria verify that a critical point has been found, although we cannot determine
whether a critical point is a local extremizer or saddle point using the methods in this
chapter.

Remark 3.1. Due to the exponential decay of critical points it can be assumed that for
sufficiently large L, critical points computed on the interval D = [0, L] are good approx-
imations of critical points computed on unbounded domains. In light of Theorem 2.15,
which implies that for V = 0 no critical points exist on the half-line, computations made
below with V = 0 should be interpreted as approximations to critical points in free space
(D = R), and computations made with V 6= 0 should be interpreted as approximations to
critical points on the half line D = [0,∞).

41



3.1 Fixed-Point Iterator

The following scheme computes critical points of Eν by discretizing the map T : P(D)→
P(D) given in (2.8). Recall that we define

T (ρ) :=
exp

(
−K ∗ ρ+ V

ν

)
∫
D

exp
(
−K ∗ ρ+ V

ν

)
dx

= Z−1(ρ) exp
(
−K ∗ ρ+ V

ν

)

and that fixed points of T are critical points of Eν (in particular, the set of fixed points of
T are exactly the critical points of Eν which are absolutely continuous and supported on
the whole domain). We use the iterative scheme

ρn+1 = (1− τn)ρn + τnT (ρn) (3.1)

where

τn =


1, Eν [T (ρn)] < Eν [ρn]

τc, otherwise
(3.2)

with inputs τc ∈ (0, 1) and ρ0 ∈ Pac(D). In words, each iteration produces an absolutely
continuous probability measure ρn+1 that is a convex combination of the previous iterate
ρn and its image under T , unless the energy of T (ρn) is lower than that of ρn, in which case
ρn+1 = T (ρn). Each step requires computation of the integral terms in T (ρn) and Eν [ρn],
which for D = [0, L] is done by discretizing the interval into N quadrature nodes and
numerically integrating. For uniform grids, we use MATLAB’s conv function to compute
K∗ρn, while for non-uniform grids we use trapezoidal integration. The scheme is terminated
when

‖ρn − T (ρn)‖L1(D) < tol or n > Nmax (3.3)

where tol and Nmax are specified by the user.

3.1.1 Stability Constraints

The scheme (3.1) has many benefits. It is explicit, so only numerical integration is
required at each step, which allows for flexibility of the spatial grid. It is also positivity
preserving, something that the Newton continuation method and PDE solver below cannot
guarantee. Due to the explicit nature, however, there are a few stability constraints.

Oscillations

The first stability constraint has to do with preventing spurious oscillations and can
be explained by casting the scheme as a discretization of the following integro-differential
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equation: assuming τn � 1, (3.1) can be viewed as a forward-Euler discretization of
∂

∂t
ρ(x, t) = T (ρ(x, t))− ρ(x, t), (x, t) ∈ D × (0,∞)

ρ(x, 0) = ρ0(x) ∈ Pac(D), x ∈ D
(3.4)

whose steady states are exactly the fixed points of T . Details on the global well-posedness of
(3.4) when D is bounded, K is bounded below, and V is positive can be found in Appendix
A, where it is shown that T is L1 Lipschitz continuous on Pac(D) and that ρ(x, t) ∈ Pac(D)
for all t ∈ [0,∞).

For any point x∗ ∈ D, the time evolution of ρ(x∗, t) under the PDE (3.4) is such that
ρ(x∗, t) increases when ρ(x∗, t) < T (ρ(x∗, t)) and decreases when ρ(x∗, t) > T (ρ(x∗, t)).
Analytically, if ρ0 lies in the basin of attraction of some fixed point ρ of T , we have the con-
vergence limt→∞ ρ(x∗, t) = ρ(x∗). If ρ(x∗, t) oscillates around ρ(x∗) as it approaches ρ(x∗),
however, numerically one needs to be concerned with the spurious growth of such oscil-
lates. Indeed, oscillations do appear in the fixed-point method (3.1) for “timesteps” τc that
are too large, in which case the iterates ρn cycle indefinitely through a finite set of measures.

To arrive at a stable value of τc which prevents oscillations, we examine the bound on
the L1-Lipschitz constant LT of T derived in Appendix A:

LT ≤
2
ν

∥∥∥K̃∥∥∥
L∞(D−D)

exp
(1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)
,

where D −D :=
{
x− y ∈ Rd : x, y ∈ D

}
and K̃ := K −minx∈(D−D).

This may not be a very encouraging bound due to the exponential dependence on ‖K‖∞,
but it does suggest that τc should be proportional to ν. In practice, we find that τc need
not depend on ‖K‖∞ and that the scheme converges to a fixed point for τc = O(ν). (In all
computations below, τc = 5ν was sufficient.) When ν is small, this increases the number of
iterations, which necessitates the use of a faster method to arrive at a good initial guess,
which is where the Newton continuation method below comes in.

Normalization and Underflow

Another numerical issue is round-off error. Assuming for the moment that K and V

are both positive, when ν is small the argument of the exponent in T is negative and large
in magnitude. This results in underflow of digits when calculating Z(ρ) and subsequent
division by a small quantity. To avoid this, we exploit the fact that the set of critical points
of Eν is unchanged by adding a constant to K and at each step normalize the argument
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of the exponent by adding to K the factor cn := −ν logZ(ρn−1). The potential used in
simulations then changes at each iteration and is given by Kn(x) = Kn−1(x) + cn with
K0 = K. For Z(ρn) we then have

Z(ρn) = Z(ρn−1)
∫
D

exp
(
−Kn−1 ∗ ρn(x) + V

ν

)
dx,

and so as ρn → ρ we see that Z(ρn) → 1. This normalization turns out to stabilize the
problem, and results in the constant on the right-hand side of the Euler-Lagrange equation
(2.3) conveniently converging to zero, since the true value λ is equal to −ν logZ(ρ).

3.2 Newton Continuation Method

The following method works very well for producing near-critical points of Eν when
V = 0, and thus is used to arrive at a good initial guess for the fixed-point iterator.
Consider the domain D = [0, L] and a critical point ρ of Eν with V = 0. By differentiating
the Euler-Lagrange equation in the form

K ∗ ρ+ ν log(ρ) = λ

we obtain
ρK ′ ∗ ρ+ νρ′ = 0.

If ρ is an approximate minimizer with ρ + ξ = ρ for some perturbation ξ ∈ L1(D) with∫ L
0 ξ(x)dx = 0 and ξ ≥ −ρ, then we arrive at

0 = ρK ′ ∗ ρ+ νρ′

=
(
ρK ′ ∗ ρ+ νρ′

)
+
(
ξK ′ ∗ ρ+ ρK ′ ∗ ξ

)
+
(
ξK ′ ∗ ξ + νξ′

)
≈
(
ρK ′ ∗ ρ+ νρ′

)
+
(
ξK ′ ∗ ρ+ ρK ′ ∗ ξ

)
+ νξ′

or, neglecting the quadratic term ξK ′ ∗ ξ,

ρK ′ ∗ ξ + (K ′ ∗ ρ)ξ + νξ′ = −
(
ρK ′ ∗ ρ+ νρ′

)
.

From this we craft a Newton iteration of the form
Fnξn = bn ,

ρn+1 = ρn + ξn ,

ρ0 ∈ P(D)

(3.5)

for right-hand side
bn := −

(
ρnK ′ ∗ ρn + νρn′

)
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and integro-differential operator

Fnξn(x) := ρn
∫ L

0
K ′(x− y)ξn(y) dy +

(
K ′ ∗ ρn(x)

)
ξn(x) + ν

d

dx
ξn(x).

Since Fn is linear in ξn, the iteration scheme (3.5) can be easily discretized. We use a mesh
0 = x0 < · · · < xM = L where pn is the iterate ρn represented on the mesh. This gives the
linear system

Fnxn :=
[

F̃n

an, . . . , an

]
xn =

[
b̃n

0

]
=: bn.

F̃n takes the form
F̃n = diag

(
pn−1

)
K + diag

(
Kpn−1

)
+ νD1

and
b̃n = −

(
diag

(
pn−1

)
Kpn−1 + νD1pn−1

)
.

The zero-mass condition is enforced by the bottom row of Fn and corresponding 0 on the
right-hand side, where the factor an is chosen at each stage to match the scaling of F̃n.
(Admittedly, the constraint ξ ≥ −ρ is not incorporated). In addition, D1 is the centred
finite difference matrix used to discretize the first derivative and K is the matrix used to
discretize the linear convolution with K ′ to first-order accuracy in the mesh width. The
iterates are updated using pn = pn−1 + xn and the scheme runs until either

‖x‖∞ < tol or n > Nmax. (3.6)

To reach small values of ν, we employ continuation on the diffusion coefficient. This
entails solving (3.5) along the sequence ν0 > · · · > νi > · · · > νQ = ν and at the ith stage
setting the initial guess p0

i to the output of the (i − 1)st stage, assuming the scheme has
converged for νi−1. For small ν a fine mesh is still unavoidable (with spacing on the order
of 1/ν) to keep the condition number of Fn reasonably low. If Fn were to become rank-
deficient, the least-squares solution can be constructed directly using the SVD and casting
out singular values below a certain tolerance. This has been observed but not for any of
the parameters used in the numerical experiments below.

3.3 PDE Solver

We now introduce an implicit-explicit finite difference discretization of the aggregation-
diffusion PDE (1.20), which was communicated to us by Theodore Kolokolnikov. Although
the following method is designed in one dimension for D = [0, L], we note that it readily
extends to tensor product domains in higher dimensions by taking Kronecker products of
the operators introduced below. In particular, the extension to a square [0, L] × [0, L] is
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straight forward.

In one dimension, the PDE we wish to solve is

∂

∂t
ρ(x, t) = − ∂

∂x
(ρ(x, t)v(x, t)) + ν

∂2

∂x2 ρ(x, t) (x, t) ∈ (0, L)× (0, T )

v(x, t)ρ(x, t) = ν
∂

∂x
ρ(x, t) (x, t) ∈ {0, L} × (0, T )

v(x, t) = −
∫ L

0
K ′(x− y)ρ(y, t)dx− V ′(x)

ρ(x, 0) = ρ0(x) ∈ P([0, L]).

(3.7)

We will do so by treating the swarm velocity v explicitly and the flux and diffusion terms
implicitly. The main difficulties in discretizing the PDE are ensuring that the scheme obeys
conservation of mass and satisfying the no-flux boundary conditions.

Let x0 = 0, . . . , xM = L and t0 = 0, . . . , tN = T be uniform grids in space and time
defined by xj = j∆x = j LM and tn = n∆t = n TN . As well, let Un = [Un0 , . . . , UnM ]T and
V n = [V n

0 , . . . , V
n
M ]T be approximations to the density ρ(x, tn) and swarm velocity v(x, tn)

at time tn represented on the spatial grid. The scheme involves solving the following linear
system, where second-order centred finite difference operators D1 and D2 have been used
to approximate spatial derivatives, with their first and last rows modified to account for
mass conservation:

Un+1
j − Un

j

∆t = − 1
2∆x

(
Un+1

j+1 V
n

j+1 − Un+1
j−1 V

n
j−1
)

+ ν

∆x2

(
Un+1

j+1 − 2Un+1
j + Un+1

j−1
)
, j = 1, . . . ,M − 1

Un+1
0 − Un

0
∆t = − 1

2∆x
(
Un+1

0 V n
0 + Un+1

1 V n
1
)

+ ν

∆x2

(
Un+1

1 − Un+1
0

)
Un+1

M − Un
M

∆t = 1
2∆x

(
Un+1

M−1V
n

M−1 + Un+1
M V n

M

)
+ ν

∆x2

(
Un+1

M − Un+1
M−1

)
.

(As we will see below, modifying the first and last rows of D1 and D2 as above also
implements the boundary conditions to leading order.) In matrix form, the update Un+1

satisfies
AnUn+1 = Un

where
An = IM+1 + ∆tBn = IM+1 + ∆t [D1diag (V n)− νD2] ,

IM+1 being the identity matrix. We compute the velocity V n from Un at each step with
MATLAB’s conv.
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Mass Conservation and Positivity

At the PDE level, for all time t > 0 we have
∫
D ρ(x, t)dx =

∫
D ρ(x, 0)dx, which is

enforced at the discrete level if the columns of Bn sum to zero. To see this, in the discrete

setting the mass constraint is
M∑
j=0

Unj =
M∑
j=0

U0
j for all times tn, which for eTM+1 = [1, . . . , 1]

is equivalent to
eTM+1U

n+1 = eTM+1U
n = eTM+1AnUn+1

or (
eTM+1 − eTM+1An

)
Un+1 = 0

for all n = 0, . . . , N − 1. To ensure this, it is sufficient to enforce

eTM+1 = eTM+1An = eTM+1 + ∆t
(
eTM+1Bn

)
;

this is equivalent to eTM+1B
n = 0, which states that the columns of Bn sum to zero. By the

structure of D1 and D2, this is automatically satisfied for columns 1 through M − 1, and
with the 0-th and M -th rows modified as above, columns 0 and M do indeed sum to zero
as well, and so the scheme does conserve mass at the discrete level.

Positivity of solutions is not guaranteed a priori and negative mass may occur for
spatial discretizations that are too coarse compared with the diffusivity ν or timesteps that
are too large compared to the swarm velocity. As such, we heuristically enforce positivity
by choosing ∆x ∼

√
ν and picking a stable timestep, which, due to the implicit treatment

of diffusion, concerns only the flux term. For ∆t too large, we find that the flux imparts
dispersion, which can result in negative mass through small oscillations. To prevent this,
at each step we enforce a CFL-type condition on the advective flux

∆tn ≤ C
∆x

max |V n
j |
.

Choosing C = 10
√

2 along with ∆x ≤
√
ν seems to suffice for enforcing positivity.

Boundary Conditions

The modifications above to row 0 and row M are not the only options for guaranteeing
that the columns of Bn sum to zero, but they are the simplest modifications that also
enforce the boundary conditions up to O(∆t,∆x), which we now demonstrate. The first
row of the linear system AnUn+1 = Un is meant to enforce the x = 0 boundary condition
and reads

Un+1
0 + ∆t

2∆x
(
Un+1

0 V n
0 + Un+1

1 V n
1

)
− ν ∆t

∆x2

(
Un+1

1 − Un+1
0

)
= Un0 .
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Multiplying by ∆x
∆t then gives

1
2
(
Un+1

0 V n
0 + Un+1

1 V n
1

)
− ν

(
Un+1

1 − Un+1
0

∆x

)
+ ∆x

(
Un+1

0 − Un0
∆t

)
= 0.

Assuming for the moment that Un and V n are equal to the ρ(x, t) and velocity v(x, t) on
the spatial grid, and in addition that ρ(x, t) is smooth enough, we derive the deviation from
the true boundary conditions using the Taylor approximations

1
2
(
Un+1

0 V n
0 + Un+1

1 V n
1

)
= ρ(0, tn+1)v(0, tn+1) + ∆x

2
∂

∂x

(
ρ(0, tn+1)v(0, tn+1)

)
+O(∆t,∆x2)

Un+1
1 − Un+1

0
∆x = ∂

∂x
ρ(0, tn+1) + ∆x

2
∂2

∂x2 ρ(0, tn+1) +O(∆x2)

Un+1
0 − Un0

∆t = ∂

∂t
ρ(0, tn+1)− ∆t

2
∂2

∂t2
ρ(0, tn+1) +O(∆t2).

Inserting these into the first row, we get

1
2
(
Un+1

0 V n
0 + Un+1

1 V n
1

)
− ν

(
Un+1

1 − Un+1
0

∆x

)
+ ∆x

(
Un+1

0 − Un0
∆t

)

= ρ(0, tn+1)v(0, tn+1)− ν ∂
∂x
ρ(0, tn+1)

+ ∆x
2

(
∂

∂t
ρ(0, tn+1) + ∂

∂x

(
ρ(0, tn+1)v(0, tn+1)

)
− ν ∂

2

∂x2 ρ(0, tn+1)
)

+ ∆x
2

∂

∂t
ρ(0, tn+1) +O(∆t,∆x2)

= O(∆t,∆x)

where we have used the boundary conditions, the fact that ρ satisfies the PDE near x = 0,
and the assumption ∂

∂tρ(0, t) = O(1). Hence, the boundary conditions are implemented
to first order. Since U and V are first-order accurate in time and first-order accurate in
space for points away from the boundary, this reduces the method to an overall first-order
accuracy in space and time, which we have verified in standard convergence studies.

3.4 Numerical Experiments on an Interval

Using the methods above we numerically solve for critical points of Eν on D = [0, L]
and use the following two criteria for accuracy: we are primarily concerned with satisfying
the Euler-Lagrange equation in its original form,

Λ(x) := K ∗ ρ(x) + ν log(ρ(x)) + V (x) = λ for all x ∈ [0, L]
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where λ = Eν [ρ] +K[ρ], and so we check that the quantity

Λ∞ = ‖Λ− Eν [ρ]−K[ρ]‖∞ (3.8)

is below the chosen error tolerance for each numerical solution ρ. We also check that the
boundary condition (2.23) derived in Theorem 2.15 is satisfied, which reads

ρ(0)− ρ(L) = 1
ν

∫ L

0
V ′(x)ρ(x) dx.

However, in all numerical experiments we use V (x) = gx and choose L large enough that
ρ(L) is negligible, so this reduces to

ρ(0) = g

ν
, (3.9)

which is exact for D = [0,∞). Thus, we check that the relative error

E0 := |ρ(0)− g/ν|
g/ν

(3.10)

is small for numerical solutions. In what follows, denote by ρFP , ρNM and ρPDE the numer-
ical solutions produced by the fixed-point iterator, the Newton continuation method and
the PDE solver, respectively.

3.4.1 Purely Attractive Interaction Potential

The first class of potentials we examine are purely attractive, power-law potentials

Kp(x) := 1
p
|x|p

for p > 0, where repulsive forces are present in the swarm only in the form of diffusion.
Without diffusion, for all p > 0 the global minimizer is a single δ-aggregation with location
determined by the external potential V , as this realizes the infimum of the interaction en-
ergy K. The effect of switching on diffusion is to smooth out the δ-aggregation. Indeed,
Figures 3.2 and 3.3 show critical points which are continuous and unimodal, but are sup-
ported everywhere with fast-decaying tails. First we examine the case p = 2 in detail given
the results in Theorem 2.13, and compare with other small values of p. Then we look into
the limit of large p, which is motivated by the fact that minimizers of Eν are supported on
the entire domain regardless of the attraction strength (see Theorem 2.2).

Remark 3.2. We believe that the computed critical points in this section represent min-
imizers, and moreover that the global minimizer is the unique critical point for all Kp (as
is the case for p = 2); however, we leave the proof of these assertions to future work.
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Moderate Attraction Strength and Connection to Theorem 2.13

We first examine the case p = 2 to benchmark the fixed-point iterator. Recall from
Theorem 2.13 that a unique critical point exists for p = 2, which by Theorem 2.18 must
be the global minimizer. Moreover, we have an explicit formula for the global minimizer
(up to solving equation (2.22), which is done using MATLAB’s fzero command). Figure
3.1 contains computed solutions for p = 2 and V = gx for several values of g along with
convergence data. Agreement with the exact solution ρex, the Euler-Lagrange equation as
measured by Λ∞, and the boundary condition measured by E0 are all on the order of the
chosen error tolerance of 1e−6. We see especially good agreement with the Euler-Lagrange
equation, gaining two orders of accuracy relative to the error tolerance.

g ‖ρFP − ρex‖1 Λ∞ E0 Total Iterations
0.25gc 3.92e−6 9.54e−8 7.91e−6 44
gc 2.16e−6 6.63e−8 7.38e−7 16
4gc 8.13e−6 3.88e−9 7.40e−6 10

Figure 3.1: Global minimizers under Kp with p = 2, V (x) = gx and ν = 2−6 ≈ 0.0156
computed using the fixed-point iterator. The method is initialized at ρ0 = 41[0,0.25] with
error tolerance set to 1e−6 and maximum iterations set to Nmax = 2000. A spatial grid of
N = 210 points is used with points spaced quadratically to resolve the boundary at x = 0
(not all points are plotted). The value gc :=

√
2ν/π is emphasized because solutions achieve

their maximum at x = 0 if and only if g ≥ gc. For all three solutions the scheme converged
in well under Nmax iterations.

Figure 3.2 shows computed critical points for p ∈ (1, 8] to compare with the case p = 2,
and demonstrates that increasing p decreases the maximum height of the solution. A grid
of 210 uniformly spaced points was used (instead of quadratically spaced as in Figure 3.1),
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which clearly affects the accuracy at the boundary: E0 remains on the order of 10−2 despite
the error tolerance of 1e−6. Still, we see excellent agreement with the Euler-Lagrange
equation, as Λ∞ remains well below the error tolerance for each computed critical point.
Notice also that the number of iterations required for convergence when g = ν increases
dramatically as p decreases. This is most likely due to the fixed-point method inefficiently
resolving the tail of solutions, but we leave this for future investigation (see Remark 3.3).

p Λ∞ Iterations
1.0625 1.14e−8 18
1.125 4.45e−9 13
1.25 5.15e−9 12
1.5 5.30e−9 9
2 1.57e−15 2
4 8.41e−8 19
8 7.99e−7 45

p Λ∞ E0 Iterations
1.0625 9.26e−8 5.47e−2 2000
1.125 4.22e−8 4.68e−2 178
1.25 5.29e−8 3.56e−2 141
1.5 7.43e−8 2.33e−2 97
2 1.54e−7 1.33e−2 60
4 5.41e−7 5.79e−3 30
8 5.24e−7 5.04e−3 22

Figure 3.2: Critical points of Eν computed using the fixed-point iterator with Kp for p ∈
[1, 8], V (x) = gx and ν = 2−6. Left: profiles for g = 0. Right: profiles for g = ν.
As p increases, the maximum height of solutions decreases. The method is initialized at
ρ0 = 0.51[0,2] for g = 0 and closer to the wall at ρ0 = 1[0,1] for g = ν. The error tolerance
is set to 1e−6 and the maximum iterations set to Nmax = 2000. A spatial grid of N = 210

uniformly spaced points is used.

Limit of Large Attraction

We now examine numerically the limit of large p, which is motivated by the fact that
minimizers ρ of Eν satisfy supp (ρ) = D regardless of how strong the (power-law) attraction
is (see Theorem 2.2). This is a striking feature because intuitively one might expect that
for very large attraction the swarm would be confined to a compact set. Only as p→ +∞,
however, do we reach a state with compact support, and we derive this family of compactly
supported states below in one dimension. We compute critical points for powers up to
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p = 256 to suggest convergence to the compactly supported states included in Figure 3.3,
as well as to exhibit the versatility of the fixed-point iterator.

The limit as p→∞ is clearly singular, as the limiting interaction potential K∞ defined
by

lim
p→∞

Kp(x) = K∞(x) :=

0, x ∈ [−1, 1]

+∞, x /∈ [−1, 1]

is no longer locally integrable. As such, the space of probability measures on which the
resulting energy is finite is very limited. Despite this, we can still determine minimizers for
Eν under K∞.

Recall that the interaction energy K is infinite for measures that do not satisfy a mo-
ment bound determined by the growth of K at infinity (in other words, swarms that are too
spread out can have infinite interaction energy). This is why in Assumption 1 of Chapter
2 we assume that K(x) . |x|pK as |x| → ∞, so that we can limit our attention to the
Wasserstein space (PpK (D),WpK ) upon which the interaction energy is finite. For K∞ it is
not hard to show that the corresponding interaction energy K∞ satisfies

K∞[µ] =

0, if µ is supported on a unit interval

+∞, otherwise,

and so the space we should be looking for minimizers in is

{µ ∈ P∞(D) : supp (µ) ⊂ [a, 1 + a] for some a ∈ R} .

To arrive at this, for the interaction energy we have

K∞[µ] = 1
2

∫
D

∫
D
K∞(x− y) dµ(y) dµ(x) = 1

2

∫
supp(µ)

(K∞ ∗ µ(x)) dµ(x),

which is finite if and only if K∞ ∗ µ is finite µ-a.e. By computing

K∞ ∗ µ(x) =
∫

supp(µ)
K∞(x− y) dµ(y)

=
∫

supp(µ)∩[x−1,x+1]c
K∞(x− y) dµ(y)

=

0, µ([x− 1, x+ 1]c) = 0

+∞, otherwise,

we see that K∞[µ] = +∞ unless µ([x − 1, x + 1]c) = 0 for µ-a.e. x ∈ D, which can be
shown to be equivalent to µ having support on a unit interval. From this we deduce that
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a minimizer ρ∞ has support on a unit interval and satisfies K∞ ∗ ρ∞(x) = 0 for ρ∞-a.e. x,
hence the Euler-Lagrange equation reads

ν log(ρ∞(x)) + V (x) = λ, ρ∞-a.e. x ∈ D

or, using supp (ρ∞) = [0, 1],

ρ∞ =


1[0,1] for V = 0

Z−1e−V/ν1[0,1] for V 6= 0.
(3.11)

Figure 3.3 shows critical points for Kp and V = gx for larger values of p together with
the corresponding limiting measure ρ∞ derived above. For g = 0, as p increases we see
solutions increasing to ρ∞ inside [0.5, 1.5] and decreasing to zero elsewhere. For g = ν the
boundary condition (3.9) reduces to ρ(0) = 1, which is satisfied through increasingly sharp
transitions as p increases, and is not satisfied in the limit by ρ∞. We still see Λ∞ values
near the error tolerance, except for p = 256, where the method clearly breaks down, as the
scheme converges in fewer than Nmax iterations yet Λ∞ is O(1).

p Λ∞ Iterations
16 1.92e−6 64
32 3.84e−6 131
64 8.50e−6 168
128 1.57e−5 186
256 2.33e−1 180

p Λ∞ E0 Iterations
16 5.11e−6 7.16e−3 16
32 6.86e−6 1.29e−2 116
64 1.30e−5 2.55e−2 115
128 2.70e−5 5.10e−2 136
256 2.48e−1 9.97e−2 140

Figure 3.3: Critical points of Eν computed using the fixed-point iterator with Kp for p = 2k,
k = 4, . . . , 8, V (x) = gx and ν = 2−6. Left: profiles for g = 0. Right: profiles for g = ν. As
p increases, ρ drops off sharply outside an interval of length 1, approaching the compactly
supported state ρ∞ defined in (3.11). Parameters for the fixed-point iterator are the same
as in Figure 3.2.
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Remark 3.3. We do not examine the limit of small p in this thesis, but note that it is not
too hard to show that critical points for Kp approach a δ-aggregation as p→ 0. To see this
numerically, one must reduce the number of iterations for convergence seen in Figure 3.2
for small p, which can be done by computing solutions on smaller and smaller domains. For
instance, we find that the fixed-point iterator converges in 277 iterations on D = [0, 0.5] for
p = 1 and g = ν, and expect similar results for smaller p on smaller domains.

3.4.2 Attractive-Repulsive Interaction Potential

The second class of interaction potentials we consider involve attraction at large dis-
tances and repulsion at short distances. So-called attractive-repulsive potentials have been
the subject of a substantial amount of research in recent years (see [2, 4, 15, 16, 18, 19, 26])
for their potential to model biological swarms, which predominantly seem to obey the fol-
lowing basic rules: if two individuals are too close, increase their distance, if too far away,
decrease their distance.

We will restrict our attention to C1 regularizations of the potential

KQANR(x) = 1
2 |x|

2 + 2φ(x)

which features quadratic attraction and Newtonian repulsion given by the free-space Green’s
function φ(x) for the negative Laplacian −∆:

φ(x) :=


−1

2 |x| in R,

− 1
2π log |x| in R2.

(3.12)

In one dimension, the C1 regularized versions of KQANR form the one-parameter family

Kε(x) := 1
2x

2 + 2φε(x) := 1
2x

2 +


−|x|, |x| > ε

− ε2 −
1
2εx

2, |x| ≤ ε
(3.13)

for ε ∈ (0, 1], such that limε→0Kε = KQANR. See Figure 3.4 for a schematic of these
potentials along with the pairwise forces they impart between particles.
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Figure 3.4: KQANR and Kε for ε = 0.2, 0.4, 0.6, 0.8, 1. Potentials are plotted on the left,
forces on the right (recall that −K ′(x) gives the force felt between two particles separated
by a distance x). As ε decreases we go from infinitesimal repulsion at infinitesimal distances
to finite repulsion at infinitesimal distances.

We examine the potentials Kε for two reasons. Firstly, as the parameter ε is decreased
from 1 to 0, the number of aggregates in a given steady state appears to increase; however,
a complete theory for determining the number of aggregates as a function of ε is currently
lacking for the aggregation-diffusion model. (A partial theory exists for the plain aggre-
gation model in free space without external forces, which we review below). One might
expect that with linear diffusion there would exist a unique number of aggregates for any
fixed ε; however, we give numerical evidence to the contrary in Figure 3.6. In light of this,
we suggest a numerical procedure involving continuation on the diffusion coefficient ν for
extracting states with globally minimizing configurations of aggregates, which we believe
are unique for each fixed ε.

We also choose to examine Kε because KQANR and Kε have been shown to produce
disconnected, unstable states in the plain aggregation model when D is the half-line or half-
plane [18, 19], which initially motivated our study of the model with linear diffusion. Below
we construct similar states numerically on the half-line, where instead of a δ-aggregation
at the boundary we have a boundary layer, and we find that as the external potential V is
increased, the boundary layer steepens and aggregations away from the boundary merge.
This adds another layer to the discussion on uniqueness of the number of aggregates and
provokes questions about biological applications.

Remark 3.4. The findings in this section are preliminary and are presented mostly to
motivate further study, as well as to demonstrate that our numerical methods are also
suitable for attractive-repulsive potentials.
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Non-Uniqueness in the Number of Aggregates

To get a sense of the problem, Figure 3.5 displays solutions under Kε for various ε and
V = 0, showing that decreasing ε increases the number of aggregates. (Numerical informa-
tion can be found in Remarks 3.5 and 3.6 as well as Figure 3.7). As mentioned above, it
is not fully understood how the distribution of aggregates (i.e. the number of aggregates
and their relative positions and masses) changes as a function of ε. For ν = 0 and D = R,
it is proven by Fellner and Raoul in [16] that as ε → 0 minimizers of the related potential
K̃ε(x) = 1

2x
2 + φε(x) converge weakly-* to the global minimizer for K̃(x) = 1

2x
2 + φ(x),

which is the characteristic function of the unit ball. The authors of [16] also derive an upper
bound on the number of aggregates under K̃ε for any given ε > 0, showing that for any
n < 1

ε there exists a stable configuration of n δ-aggregations, possibly with unequal mass.
In our case, with Kε it appears that this bound is n < 2

ε .

One might expect that for each ε, switching on diffusion selects a unique number of
aggregates in all minimizing states. Similar results have been documented: Evers and
Kolokolnikov establish in [15] that adding any level of diffusion to an equilibrium consisting
of two aggregates of unequal mass for the plain aggregation model under the double-well
potential K(x) = −1

2x
2 + 1

4x
4 causes the state to become metastable, where mass is trans-

fered between the two aggregates until their masses equilibrate, which only happens after
infinite time. As evidenced by the numerical example in Figure 3.6, where a four-aggregate
and a five-aggregate state both exist as critical points for the same ε and ν values, it
seems that diffusion does not guarantee a unique number of aggregates. It is clear that
the four-aggregate state is preferred, as it has lower energy and requires fewer iterations
of the fixed-point iterator. We believe that the numerical method used to compute each
solution, in particular using continuation on the diffusion coefficient, suggests a method for
computing the globally-minimizing configuration for each ε. Both the four-aggregate and
five-aggregate state are computed with diffusion coefficient ν = 2−13, but the four-aggregate
state is reached by starting the Newton continuation method at ν0 = 10ν, whereas the five-
aggregate state is started out at ν0 = 2ν. The more energy-favourable state is reached from
a larger starting ν0, which suggests that using continuation from larger diffusion might be a
mechanism for extracting the global minimizer. We can use ice crystallization as a physical
analogy: more imperfections form in ice crystals when water is frozen abruptly, indicating
a non-energy-minimizing configuration, than when water is frozen slowly (see for instance
[30]).
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Figure 3.5: Critical points of Eν computed using fixed-point iteration combined with the
Newton continuation method for Kε, V = 0 and ν = 2−11 ≈ 0.0005.
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ν0 Eν Λ∞ Iterations
10ν −0.74841 5.73e−7 26
2ν −0.74826 1.19e−6 1149

Figure 3.6: Multiple critical points for Kε with ε = 0.3 and ν = 2−13. In each case, the
fixed-point iterator was initiated at the output ρNM of the Newton continuation method
started from ν0. With ν0 = 10ν, we arrive at the four-aggregate state which has slightly
lower energy and lower Λ∞, and needs far fewer iterations for convergence of the fixed-point
method. For ν0 = 2ν, a five-aggregate critical point emerges. Due to the high number of
iterations required, this state is at best aWp-r local minimum for a small radius r, but very
well could be a saddle point or local maximum.

Remark 3.5. Multiple aggregates under Kε only appear distinct to the eye for small
diffusion (we use ν = 2−11 in Figure 3.5 and ν = 2−13 in Figure 3.6). Their computation
is a delicate matter. We use a uniform grid of 400 points with tolerance 1e−6 for the
fixed-point iterator, which is initiated at the output ρNM of the Newton iteration. To
calculate ρNM for solutions in Figure 3.5, continuation was employed using 40 diffusion
values between ν0 = 2−8 and ν = 2−11. A tolerance of 1e−10 was used for the Newton
iterator, with convergence in under 50 iterations for each diffusion coefficient.

Remark 3.6. We note that ρNM , as well as the output ρPDE from the PDE solver initiated
at ρNM , are indistiguishable from ρFP to the eye and so have been omitted from Figure 3.5.
More importantly, we find that ρNM and ρPDE don’t satisfy the Euler-Lagrange equation
as well as ρFP , with Λ∞ values on the order of 10−2. This can be explained by the PDE
method and Newton iterator failing to resolve the tails of solutions, as depicted in Figure
3.7.
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ε Λ∞ Iterations
0.15 4.47e−8 506
0.2 9.66e−8 1073
0.25 1.27e−7 582
0.3 2.49e−7 76
0.4 2.96e−6 22
0.55 1.52e−7 93

Figure 3.7: Left: Convergence data for solutions ρFP in Figure 3.5. Right: logarithmic plots
of the tails of computed solutions for ε = 0.4, where clearly ρFP has the best resolution.

Boundary Layers and Merging Aggregates

This last numerical experiment involves the external potential V (x) = gx and focuses
on the phenomenon of aggregates merging together as the “gravity” strength g is increased.
Figure 3.8 shows states ρFP and ρPDE reached by the fixed-point iterator and PDE solver,
respectively, under Kε for fixed ε = 0.5. Both ρFP and ρPDE are initiated at the output of
the Newton continuation method for g = 0, which consists of three aggregates. Here we are
not as interested in small diffusion and so we use the moderate diffusion level ν = 2−9.

By plotting ρFP and ρPDE together we see that the effect of “turning on” gravity dynam-
ically produces the same state as the critical point computed directly using the fixed-point
iterator, suggesting uniqueness of the critical point. These states are qualitatively similar
to the equilibria of the plain aggregation model on the half-line which were found to be
unstable in [18] and [19] and consist of a boundary aggregation and “free-swarm” compo-
nent of disjoint supports. When g is increased, we see in Figure 3.8 that the two aggregates
away from the boundary merge together, instead of also getting pinned to the boundary.
This is somewhat unexpected, but can be explained by the fact that the boundary aggre-
gation imparts a repulsive force from the left, while gravity imparts a force from the right,
and so the effect is compression. A possible biological interpretation could be that fewer,
larger aggregates are more favourable for withstanding external stresses. In any case, from
Figure 3.8 it appears that states consisting of a boundary aggregation and “free-swarm”
component naturally appear in aggregation-diffusion models with external gravity.
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Figure 3.8: Merging of aggregates under increasing gravity. Solutions using the fixed-
point iterator and PDE solver are overlaid. The numerical scheme and parameters are as in
Remark 3.5, with ρFP and ρPDE both initiated at ρNM . Gravity values g are set to multiples
of ν to visually check the boundary condition ρ(0) = g

ν (see inset plots). In each case the
fixed-point iterator converged in under 2000 iterations to within the desired error tolerance
and produces Λ∞ values on the order of the error tolerance. The PDE solver does not
produce Λ∞ values within tolerance for reasons discussed in Remark 3.6.
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Chapter 4

Zero-Diffusion Limit Numerics

This chapter is devoted to numerically verifying the analytical rate with which solutions
of the aggregation-diffusion model (1.20) converge to solutions of the plain aggregation
model (1.14) as ν → 0, which is my main contribution to the recently submitted article
[17]. Specifically, we show that the asymptotic rate

E
[
W2
∞

(
µν,Xt , µXt

)]
= O(ν)

presented in [17] (and reproduced below in Theorem 4.3) is realized in numerical simula-
tions of the particle systems Xν

t and Xt for typical domains D ⊂ R2 and attractive-repulsive
potentials K. To show this, we evolve the particle systems explicitly in time with suitable
boundary conditions, and compute the distance W∞ at times of interest using a matching
algorithm. A Monte Carlo algorithm is then employed to estimate the expectation. The
procedure is highly dependent on the accuracy of particle simulations; however, we find
that suitably scaling the timestep ∆t with the diffusion coefficient ν successfully reveals the
O(ν) convergence rate with great gains in computation time.

We recall the particle systems from Chapter 1 here. The particle system Xt underlying
the plain aggregation (non-diffusive) model in domains with boundaries satisfies


d

dt
Xi
t = Px

− 1
N

N∑
j 6=i
∇Xi

t
K
(
Xi
t −X

j
t

)
−∇V

(
Xi
t

)
Xi

0 = xi0 ∈ Rd,

(4.1)

while the particle system Xν
t underlying the aggregation-diffusion model satisfies

dXν,i
t =

− 1
N

N∑
j 6=i
∇
Xν,i
t
K
(
Xν,i
t −X

ν,j
t

)
− V

(
Xν,i
t

) dt+
√

2ν dBi
t + dRit

Law
(
Xi,ν

0

)
= µν0 ∈ P2(D).

(4.2)
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4.1 Motivation

Analytically, the rate with which solutions of the aggregation model with linear diffu-
sion converge to solutions of the plain aggregation model, presented in [17], verifies that
linear diffusion is a robust mechanism for regularizing the plain aggregation model: it en-
sures that solutions of the two models can be made arbitrarily close to each other (in the
Wasserstein sense) by choosing ν small enough. In the context of domains with boundaries,
regularization of the plain aggregation model by linear diffusion is motivated by the desire
to investigate how the swarm escapes from unstable equilibria. (Recall from Chapter 1 that
in domains with boundaries, the plain aggregation model (1.14) readily develops into unsta-
ble states µds which consist of a boundary swarm and a free swarm with disjoint supports.)

In [19], Fetecau et al. prove convergence in the zero-diffusion limit for nonlinear diffu-
sion and show how the swarm escapes from an unstable equilibrium on the half-line using
PDE simulations. Nonlinear diffusion leads to repeated mass transfers from the boundary
at x = 0 into the free swarm, a process which successively lowers the energy. In higher
dimensions, it is much harder to numerically investigate such phase transitions in domains
with boundaries using PDE methods, as complex geometries and small diffusion lead to a
large computational overhead. This provided the initial motivation for pursuing analysis of
the model with linear diffusion (and to this thesis): linear diffusion has the advantage of
a stochastic particle interpretation, the numerics for which are well suited for both higher
dimensions and small diffusion. As such, the zero-diffusion limit numerics in [17] (my main
contribution) are presented to show that stochastic particle simulations are a practical
computational framework in which to explore instabilities of the plain aggregation model
in higher dimensions.

In addition, the convergence rate in [17] improves on a similar convergence rate proved by
Zhang in [34] and for more general potentials K and V (details below). These improvements
were found by Hui Huang (together with Fetecau, Sun and myself) to be a direct result
of utilizing the underlying stochastic particle systems of the models. This provides further
motivation for using stochastic particle simulations to numerically verify the convergence
rate: we wish to show that in practice (i.e. numerically), one can expect O(ν) convergence
in the zero-diffusion limit, and for more general potentials.
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4.2 Analytical Results

Here we reproduce the analytical results from [17] which establish the zero-diffusion
limit in bounded, convex domains under the following assumptions on D, K and V , where
Theorem 4.3 will be verified numerically.

Definition 4.1. A function f ∈ C1(D) is λ-convex on a convex set D if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ λ

2 |y − x|
2 for any x, y ∈ D. (4.3)

In other words, a function f is λ-convex if the function f(x)− λ
2 |x|

2 is convex.

Assumption 3.

1. D ⊂ Rd is convex and bounded, and ∂D ∈ C1.

2. K(x) = K(−x) for all x ∈ Rd.

3. K ∈ C1(D −D) is λK-convex on D −D for some λK ∈ R.

4. V ∈ C1(D) is λV -convex on D for some λV ∈ R

We then have the following convergence results at the PDE and particle levels, where for
any a ∈ R we let a− := min{0, a}.

Theorem 4.2 (Theorem 3.5, [17]). Assume that K, V and D satisfy Assumption 3. For
any T > 0, let µνt and µt be weak solutions to (1.20) and (1.14) on [0, T ], respectively, with
both systems sharing the same initial data µ0 ∈ P(D). Then it holds that

W2
2 (µνt , µt) ≤ 2dνt

(
1− 2(λ−K + λ−V )te−2(λ−K+λ−V )t

)
for all t ∈ [0, T ].

Theorem 4.3 (Theorem 4.3, [17]). Assume that {Xi
0}Ni=1 are N i.i.d. random variables with

the common law µ0. Let {Xν,i
t }Ni=1 and {Xi

t}Ni=1 satisfy particle systems (4.2) and (4.1) with
associated empirical measures µν,Xt and µXt , respectively, and suppose that {Xν,i

t }Ni=1 and
{Xi

t}Ni=1 share the same initial data {Xi
0}Ni=1. Then it holds that

E
[
W2
∞(µν,Xt , µXt )

]
≤ 2dνt

(
1− 2(λ−K + λ−V )te−2(λ−K+λ−V )t

)
for all t ∈ [0, T ]. (4.4)
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4.3 Numerical Method

In this section we introduce the numerical method behind taking the zero-diffusion limit
for aggregation models satisfying Assumption 3 above. In what follows, denote the nu-
merical solutions to the diffusive (4.2) and non-diffusive (4.1) particle systems along the
partition 0 = τ0 < τ1 < · · · < τL = T by

X̃ν
τn :=

{
X̃ν,i
τn

}N
i=1

and X̃τn :=
{
X̃i
τn

}N
i=1

,

respectively, with empirical measures µν,X̃τn and µX̃τn .

4.3.1 Particle Simulation

Plain Aggregation

To compute numerical solutions of the non-diffusive particle system (4.1) we use explicit
Euler timestepping with projection. To approximate the continuous projection operator Px
given by (1.13), particles landing outside the domain at the end of a given timestep are
placed onto the closest point in ∂D using the projection operator

π
∂D

(x) =

argminz∈∂D|x− z|, x /∈ D

x, x ∈ D.
(4.5)

A schematic for the projection operator is given in Figure 4.1. Note that π
∂D

(x) is uniquely
determined for all x ∈ Rd due to the convexity of D. The update at time τn+1 for system
(4.1) is then computed using

X̃i
τn+1 = π

∂D

(
X̃i
τn −∆tn

( 1
N

∑
j 6=i
∇K(X̃i

τn − X̃
j
τn) +∇V (X̃i

τn)
))

(4.6)

where ∆tn := τn+1− τn. We note that by comparing to a fine-grid solution this method can
been shown to converge with O(∆t). Such a low-order method suffices because the accuracy
bottleneck for showing the zero-diffusion limit appears in the stochastic simulations (see
Section 4.3.3 below).

Aggregation-Diffusion

For numerical solutions of the stochastic particle system (4.2) we use the symmetrized
reflection scheme introduced by Bossy, Gobet and Talay in [6], which is simply the stochastic
Euler-Maruyama method with symmetric reflection through the boundary. For this we

64



define the reflection operator R:

R(x) =

x , if x ∈ D,

x− 2 (x− π
∂D

(x)) , otherwise,
(4.7)

where n is the unit outward normal to ∂D at π
∂D

(x). In words, the operator R takes
the mirror reflection across ∂D of points outside D (see Figure 4.1). For points in a small
enough neighbourhood of D, such reflections lie in D.

Figure 4.1: Illustration of the projection π
∂D

(see (4.5)) and the reflection operator R (see
(4.7)) for a point x /∈ D.

For the particle system (4.2), the update is then

X̃ν,i
τn+1 = R

(
X̃ν,i
τn −∆tn

( 1
N

∑
j 6=i
∇K(X̃ν,i

τn − X̃
ν,j
τn ) +∇V (X̃ν,i

τn )
)

+
√

2ν∆tnN d(0, 1)
)

(4.8)

where N d(0, 1) denotes the standard d-dimensional Gaussian random variable with mean
zero and variance one.

One reason for using the symmetrized Euler scheme is that its weak convergence rate is
shown in [6] to be O(∆t) when applied to an isolated reflecting diffusion process, which to
our knowledge is the highest weak order of convergence found in the literature for reflected
SDEs. Recall that a numerical approximation X̃T to a stochastic process XT at time T is
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said to have a weak convergence rate of O(∆tp) when

eweakf (∆t) :=
∣∣∣∣∣E[f(X̃T

)]
− E

[
f
(
XT

)]∣∣∣∣∣ = O(∆tp)

for all f in some class of test functions [20]. For instance, the authors of [6] establish the
weak convergence rate of the symmetrized Euler scheme for f ∈ C5

b (D). Analysis of the
method applied to interacting diffusions, as in our scenario, is still open, however Figure 4.2
shows that the method appears to converge with O(∆t) for a system of N = 5 particles.

Figure 4.2: Weak convergence of the Euler-Maruyama scheme with symmetric reflection
(4.8) applied to the particle system (4.2) for ν = 0.01 and N = 5 particles in the disk DC

using the interaction potential K3/2 (Section 4.4.1). We use the test function g : RNd → R
given by g(x) = 1

N |x|
2, which is relevant to computations of the Wasserstein distance (4.9)

as it contains the squared Euclidean distance. We compare at time τn = 0.25 to a fine-grid
solution Xfine

τn computed with timestep ∆t = 2−15, and use 2 × 105 sample trajectories
all sharing the same initial data to approximate expectations. Left: semi-log plot showing
convergence of E

[
g
(
X̃ν
τn

)]
to E

[
g
(
Xfine
τn

)]
as well as 95% confidence intervals. Right:

log-log plot showing a convergence rate of approximately O(∆t).

4.3.2 Wasserstein Distance Between Empirical Measures

From the numerical particle systems X̃ν
τn and X̃τn we compute the distanceW2

∞

(
µν,X̃τn , µX̃τn

)
by utilizing a convenient reduction of the Monge-Kantorovich transport problem in the case
of empirical measures [32]:

W2
∞

(
µν,X̃τn , µX̃τn

)
= min

σ∈SN

{
max
i

∣∣∣X̃ν,i
τn − X̃

σ(i)
τn

∣∣∣2} , (4.9)

where SN is the set of permutations on N elements. A minimizer σ thus defines a bijection
between the two particle systems, or a “perfect matching”, which minimizes the farthest
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distance between any two matched particles X̃ν,i
τn and X̃σ(i)

τn . In this way, we verify Theorem
4.3 by using a matching algorithm and the theory of bipartite graphs to compute (4.9) at
times τn.

Remark 4.4. We recently discovered that the following method, although developed in-
dependently, appears in Chapter 6 of [7], a textbook on linear assignment problems. The
problem of computing (4.9) above is referred to in the linear programming community as
the bottleneck assignment problem.

Method Overview

Let X̃ν
τn and X̃τn represent the 2N vertices of a complete, weighted bipartite graph G

with bipartite adjacency matrix A having edge weights

Aij =
∣∣∣X̃ν,i

τn − X̃
j
τn

∣∣∣2 .
The edge weight Aij represents the cost of transporting particle X̃ν,i

τn into particle X̃j
τn .

Finding an optimal transport plan between the empirical measures µν,X̃τn and µX̃τn is equiva-
lent to finding a perfect matching in G with least maximum-matching cost, where a perfect
matching, as alluded to above, is a bijection between the two partitions X̃ν

τn and X̃τn of G.

We find a perfect matching in G with least maximum-matching cost as follows: let
C = {ck}kmax

k=1 be the sequence of unique edge weights Aij in increasing order, where clearly
1 ≤ kmax ≤ N2. For each k ≤ kmax, let Bk be the bipartite adjacency matrix for the
subgraph of G obtained by removing all edges of cost greater than ck:

Bk
ij :=

1, Aij ≤ ck
0, Aij > ck.

We then have

W2
∞

(
µν,X̃τn , µX̃τn

)
= min

{
ck
∣∣∣Bk contains a perfect matching

}
=: c k

which identifies the transport distance uniquely with the integer k. We find k by increas-
ing k until the maximum-cardinality matchings of Bk have length N , indicating that any
maximum-cardinality matching is also a perfect matching. For this we use the Dulmage-
Mendelsohn decomposition developed in [13], which decomposes a bipartite adjacency ma-
trix into a block-diagonal matrix with one of the blocks revealing the length Nk of the
maximum-cardinality matchings. The decomposition can be computed in MATLAB using
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the command dmperm.

A necessary condition for Bk to contain a perfect matching is that Bk represents a
subgraph with the same vertex set as G (also known as a spanning subgraph), which is
identified by Bk having no rows or columns of all zeros. Hence, we must have k ≥ k0 where

k0 = min
{
k : Bk has no rows or columns of all zeros

}
.

(Without this condition we necessarily exclude at least one pair of particles from any max-
imum matching and so do not end up with a valid transport plan.) The algorithm is as
follows:

Algorithm

Let k = k0.
While k ≤ kmax:

1. Compute the Dulmage-Mendelsohn decomposition of Bk.

2. Let Nk be the length of a maximum-cardinality matching of Bk.

3. If Nk = N , return k = k, else set k = k + 1.

We then have W2
∞

(
µν,X̃τn , µX̃τn

)
= ck. Computation of a maximum matching using dmperm

can be shown to take O(N2) flops and so the algorithm must terminate with a worst-case
running time of O(N2(N2−k0)). For the purposes of the zero-diffusion limit, however, this
appears closer to O(N2), as for small ν we see that k is reasonably close to k0.

4.3.3 Error Analysis

The above algorithm is used to compute the distance between numerical empirical mea-
sures. To reveal the asymptotic O(ν) rate, the particle simulations must be sufficiently
accurate, which is dictated by the timestep ∆t. Rather than pick a very small, uniform
timestep for all simulations (i.e. for every value of ν), which would result in exceedingly
long computation times, we give here a heuristic argument for using the scaling

∆t ∼
√
ν.

Fix ν and consider copies of the numerical particle systems X̃ν
τn and X̃τn , both with uniform

timestep ∆t, and copies of the exact particle systems Xν
t and Xt, with all four systems

initialized at the same X0. For a fixed time τn, let σn be a minimizing permutation for
W2
∞

(
µν,Xτn , µXτn

)
as in equation (4.9). We can then relate the numerical and exact W∞
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distances as follows:

W2
∞

(
µν,X̃τn , µX̃τn

)
≤ max

i

∣∣∣X̃ν,i
τn − X̃

σn(i)
τn

∣∣∣2
= max

i

∣∣∣X̃ν,i
τn − X̃

σn(i)
τn

∣∣∣2 − (max
i

∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣2 −max
i

∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣2)
≤
(

max
i

∣∣∣X̃ν,i
τn − X̃

σn(i)
τn

∣∣∣2 −max
i

∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣2)
+ max

i

∣∣∣Xν,i
τn −X

σn(i)
τn

∣∣∣2 + 2C∆t
(

max
i

∣∣∣Xν,i
τn −X

σn(i)
τn

∣∣∣)+ (C∆t)2

=
(

max
i

∣∣∣X̃ν,i
τn − X̃

σn(i)
τn

∣∣∣2 −max
i

∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣2)
+W2

∞

(
µν,Xτn , µXτn

)
+ 2C∆tW∞

(
µν,Xτn , µXτn

)
+ (C∆t)2

where we have used the triangle inequality∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣ ≤ ∣∣∣Xν,i
τn −X

σn(i)
τn

∣∣∣+ ∣∣∣X̃σn(i)
τn −Xσn(i)

τn

∣∣∣ ≤ ∣∣∣Xν,i
τn −X

σn(i)
τn

∣∣∣+ C∆t

and C∆t, C > 0, is the error in the approximation X̃τn due to the explicit Euler rule.

Taking expectations on both sides (see Remark 4.5) and using the O(ν) convergence of
Theorem 4.3, we get

E
[
W2
∞

(
µν,X̃τn , µX̃τn

)]
≤ C1(∆t ; ν) + E

[
W2
∞

(
µν,Xτn , µXτn

)]
+ 2C∆tE

[
W∞

(
µν,Xτn , µXτn

)]
+ (C∆t)2

≤ C1(∆t ; ν) + C̃
(
ν +
√
ν∆t+ ∆t2

)
for constant C̃ independent of ∆t and ν, and weak error in the approximation X̃ν,

τn given
by

C1(∆t ; ν) =
∣∣∣∣∣E
(

max
i

∣∣∣X̃ν,i
τn − X̃

σn(i)
τn

∣∣∣2)− E
(

max
i

∣∣∣Xν,i
τn − X̃

σn(i)
τn

∣∣∣2) ∣∣∣∣∣.
Here the test function used in the weak error is of the form

fσ,y (x) := max
i

∣∣∣πi(x)− πσ(i)(y)
∣∣∣2

where πi(x) is the projection onto the ith coordinate of x ∈ DN and y ∈ DN is fixed.

Now, if we let ∆t = O(
√
ν), we see that

E
[
W2
∞

(
µν,X̃τn , µX̃τn

)]
= O(ν)
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as desired provided that
C1(∆t ; ν) = O(∆t

√
ν). (4.10)

At the moment we are unable to provide a proof of the asymptotic behaviour (4.10). As
mentioned above, the convergence plot in Figure 4.2 suggests that C1(∆t ; ν) = O(∆t) for
fixed ν, consistent with the weak convergence of the symmetrized Euler scheme. As well,
using ∆t =

√
ν is seen in the results below to produce the desired O(ν) convergence rate, so

we adopt the scaling ∆t ∼
√
ν as a heuristic and leave further justification to future work.

Remark 4.5. Strictly speaking, we cannot guarantee that the weak numerical copy X̃ν
τn

is defined on the same probability space as the copy Xν
τn of the exact solution, so we

take expectation with respect to their product measures under the assumption that the
underlying Brownian motions are independent in the product space.

4.3.4 Monte Carlo Algorithm

To calculate the expectation in Theorem 4.3, we average over sample trajectories using the
following Monte Carlo algorithm. For convenience, denote the expectation of the squared
distance between exact empirical measures by

W ν(τn) := E
[
W2
∞

(
µν,Xτn , µXτn

)]
and the expectation of the squared distance between numerical empirical measures by

W̃ ν(τn) := E
[
W2
∞

(
µν,X̃τn , µX̃τn

)]
.

The following algorithm is used to approximate W̃ ν(τn) from numerically simulated sample
trajectories. We then discuss how this in turn provides a good approximation of W ν(τn).

Sample Trajectories, Sample Average and Confidence Intervals

For ν fixed, the mth sample trajectory Ỹm (τn ; ν) is computed as follows:

1. Generate initial particle positions X̃τ0 = X̃ν
τ0 =

{
Xi

0
}N
i=1 randomly from the common

law µ0.

2. Advance particle systems X̃τn and X̃ν
τn independently in time according to (4.6) and

(4.8).

3. Use (4.9) to compute Ỹm (τn ; ν) :=W2
∞

(
µν,X̃τn , µX̃τn

)
at each time τn.

We then estimate W̃ ν(τn) by averaging over the sample trajectories Ỹm (τn ; ν) and compute
approximate confidence intervals using methods from [27] and [23], which we recall here.
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First, we divide the M samples into an N1 × N2 array
{
Ỹij (τn ; ν)

}
and define the batch

averages and sample average, respectively, by

Ẽi (τn ; ν) := 1
N2

N2∑
j=1

Ỹij (τn ; ν) and ẼM (τn ; ν) := 1
M

M∑
m=1

Ỹm (τn ; ν) .

Then we define the sample variance by

σ̃2
N1 := 1

N1 − 1

N1∑
i=1

(
Ẽi (τn ; ν)− ẼM (τn ; ν)

)2
.

By the Central Limit Theorem we have that the batch averages Ẽi (τn ; ν) are approximately
Gaussian, which implies that the random variable

TN1 := ẼM (τn ; ν)− W̃ ν(τn)√
σ̃2
N1
/M

has approximately the standard Student’s t-distribution with N1 − 1 degrees of freedom,
noting that W̃ ν(τn) is the true mean of the trajectories Ỹm (τn ; ν). Letting Ψ be the
cumulative distribution for TN1 , the 100(1− α) confidence intervals are then

CIα(τ ; ν) :=
[
ẼM (τn ; ν)− δ , ẼM (τn ; ν) + δ

]
where

δ =

√ σ̃2
N1

M

Ψ−1
(1− α

2

)
.

This arises from the approximation

P
(∣∣∣ẼM (τn ; ν)− W̃ ν(τn)

∣∣∣ < δ
)
≈ P

(
|TN1 | < δ

√
M

σ̃2
N1

)
= 2Ψ

(
δ

√
M

σ̃2
N1

)
=: 1− α.

As such, CIα(τ ; ν) constructed in this way can be assumed to contain the true (numerical)
mean W̃ ν(τn) with probability 1− α so long as N2 is large enough that the batch averages
Ẽi (τn ; ν) are well approximated by Gaussian random variables. According to [23], this is
a reasonable assumption in practice for N2 > 15.

Convergence in the Zero-Diffusion Limit

Finally, for any fixed τn we calculate the convergence rate p of the sample average,
such that ẼM (τn ; ν) = O(νp) with probability 1−α, by repeating the steps above along a
decreasing sequence of diffusion coefficients {νk}. A rate of p = 1 agrees with the analytical
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rate in Theorem 4.3. To reiterate the levels of approximation taking place, the sample
average ẼM (τn ; ν) is an approximation of the numerical mean W̃ ν(τn), which in turn is an
approximation of the true mean W ν(τn), at time τn. If the error in the particle simulations
is controlled such that W̃ ν(τn) = O(ν) (possible in practice from the the scaling ∆t ∼

√
ν

as in Section 4.3.3), and the number of samples M is taken large enough that CIα(τ ; ν)
also scales as O(ν), then we can expect to see ẼM (τn ; ν) = O(ν) in agreement with theory.

4.4 Numerical Results

As mentioned above, Theorems 4.2 and 4.3 improve on a previous result found in [34]
in two ways: the rate of convergence is improved from O

(
ν

1
d+2
)
to O(ν), which no longer

depends on the dimension d, and the regularity requirement on the potentials K and V is
weakened from C2 to C1. This allows for interaction potentials K with jump discontinuities
in the second derivative, or worse, points x where∇K(x) is not Lipschitz continuous. We use
potentials below that reflect this weakened regularity constraint, showing that the improved
O(ν) asymptotic convergence shows up in the numerics on two canonical domains D ⊂ R2.

4.4.1 Simulation Parameters

For all simulations, we fix the number of particles at N = 1000, the number of sample
trajectories at M = 250 and the external potential at V = 0. Convergence as ν → 0 is
shown on the time interval t ∈ [0, 1], which is seen in Figures 4.3 and 4.4 to be long enough
to capture interesting dynamics. The timestep is set to ∆t =

√
ν given the arguments above,

where the convergence rate as ν → 0 is calculated from the sample averages ẼM (τn ; ν)
for ν = 2−16, 2−18, . . . , 2−30. All pseudo-random number generation is done in MATLAB
with initial seed chosen randomly for each sample trajectory from the system time on the
computer.

In connection with previous results in [18] and [19] on the formation of disconnected
states under KQANR, we examine attractive-repulsive potentials similar to those in Chapter
3, with C1-regularized Newtonian repulsion and power-law attraction:

K(x) = φε(x) + 1
p
|x|p. (4.11)

Recall that in two dimensions the Newtonian potential is φ(x) = − 1
2π log |x|. We regularize

φ using

φε(x) =


1

4π (1− 2 log(ε))− 1
4πε2 |x|

2, |x| ≤ ε ,

− 1
2π log |x|, |x| > ε,

(4.12)
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where ε is fixed at 0.05 throughout in order to stay reasonably close to the Newtonian re-
pulsion given by φ.

We examine the two cases

K2(x) := φε(x) + 1
2 |x|

2 and K3/2(x) := φε(x) + 2
3 |x|

3/2,

because K2 has a jump in the second derivative and ∇K3/2 is not Lipschitz continuous at
x = 0. Both K2 and K3/2 are C1(R2), have a jump in the second derivative at x = ε,

and are λ-convex with λ = − 1
πε2

, but K2 is of class W 2,∞
loc (R2) while K3/2 falls into

C1(R2) \W 2,∞
loc (R2) due to the Lipschitz singularity at x = 0.

The domains we consider are the half-plane DH = [0,∞)× R and the disk DC = {x ∈
R2 : |x| ≤ 0.2}. Given the potentials above, DH provides an example of self-organization
near the boundary of a domain where there is abundant free space to move away from the
boundary, while DC presents a situation where the natural support of the swarm is confined
by ∂D. The two cases lead to starkly different boundary interactions at large times, as seen
by the snapshots at T = 100 in Figures 4.3 and 4.4. Initial positions X0 (shared by both
particle systems) are drawn randomly for each trajectory from a uniform square distribution
with Law(X0) = χ[0,1/4]×[−1/8,1/8] for DH and Law(X0) = χ[−1/20,1/20]×[0,1/10] for DC .

Remark 4.6. Since DH is unbounded, it violates the boundedness assumption of Theorem
4.3; however, particle simulations in DH can be interpreted as occurring in a large domain
D ⊂ R2 such that ∂D is flat near X0 and D far exceeds the natural support of the particle
systems for t ∈ [0, 1] with high probability.
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Figure 4.3: Swarming in the half-plane DH with the interaction potential K3/2, ∆t = 2−8

and ν = 2−16. Blue circles and red squares represent non-diffusive and diffusive particles,
respectively. The particle systems rapidly expand until T ≈ 1, after which attractive forces
confine the swarm. At T = 1 a representative particle is circled in the space between the
boundary aggregation and the free swarm, illustrating the pair-separation effect mentioned
in the text below. By time T = 100 the swarm has nearly escaped the boundary and is
contained in a disk in free space, with diffusive particles forming concentrated clumps and
non-diffusive particles forming δ-aggregations.
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Figure 4.4: Swarming in the disk DC , with K, ν and ∆t as in Figure 4.3. By time T ≈ 1,
particles have formed a boundary aggregation and a free swarm, as in the domain DH , with
another representative particle (circled) caught between the boundary and free swarm. By
time T = 100 the swarm has formed a disk of particle aggregates centred in the domain
along with periodic aggregations along the boundary.

4.4.2 Results

The convergence rate for each of the four {domain, potential} combinations {DH ,K2},
{DH ,K3/2}, {DC ,K2} and {DC ,K3/2} is conveyed in Figure 4.5. At times T = 0.031,
T = 0.25 and T = 0.5 we capture the desired O(ν) convergence, while by time T = 1
the convergence behaviour is not as well resolved, particularly for K3/2 on DC , where
the desired rate is only seen asymptotically for ν . 10−6.7. This can be attributed to
a number of factors. Statistical errors can be expected to grow over time, as even the
coarsest trajectories have at least n = 256 timesteps by T = 1 (see in particular the growth
of confidence intervals in Figure 4.6). Since K3/2 results in a non-Lipschitz interaction force
between particles, we are also outside of the usual theory for numerical SDE, which could
be a factor. Furthermore, for ε = 0.05 the λ-convexity constant is rather high, at λ ≈ −133.
According to Theorem 4.3, which states for V = 0 and D ⊂ R2 that

E
[
W2
∞

(
µν,Xt , µXt

)]
≤ 4νt

(
1− 2λ−te−2λ−t

)
,
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Figure 4.5: (Top) Convergence results. Clockwise from top left: {DH ,K2}, {DH ,K3/2},
{DC ,K3/2} and {DC ,K2}. Agreement with the theoretical rate of O(ν) is very good for
T . 0.5, while for T = 1 we see O(ν) convergence only for sufficiently small ν, below
approximately ν = 10−6.7.
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it is possible to see rapid exponential divergence in time of the solutions for any fixed ν,
although the estimate above arrives from a Grönwall-type argument and should not be as-
sumed to be a tight bound.

Examining the divergence in time a little more closely, we do observe an exponential
curve which matches the form above, although with growth constant far below 2λ. As
shown in Figure 4.6 for ν = 2−28 and K3/2, the data {τn, Eν(τn)}Ln=0 obtains a nonlinear
least-squares fit to y(t) = at(1 + btebt) with residual less than 10−12, where b ≈ 2.37 on DH

and b ≈ 4.14 on DC .

Figure 4.6: Evolution of ẼM (τn ; ν) over time with ν = 2−28 ≈ 10−8.4 and interaction
potential K3/2 for the half-plane DH (left) and disk DC (right). As expected, the variance
of ẼM (τn ; ν) grows significantly over time (as seen by the 95% confidence intervals), yet
we see excellent agreement using a nonlinear least-squares fit to a curve of the form y(t) =
at(1 + btebt), matching that of the bounding curve in Theorem 4.3.

The reasons above for the lack of perfect agreement at T = 1 are plausible, although we
believe the real reason is more physical. By time T = 1 the swarm has mostly separated
into a boundary aggregation and a free swarm component. Particles occupying the space
in between the boundary aggregation and the free swarm are eventually separated as one
flies with high velocity into the boundary and the other is pulled gradually into the free
swarm. For a pair of particles X̃ν,i

τn and X̃i
τn sharing the same initial position and which

end up in the space between the boundary and free aggregations, it is highly likely that
one particle will be pulled onto the boundary and the other particle will be left drifting
towards the free swarm (examples of this are circled in Figures 4.3 and 4.4 at time T = 1).
This pair-separation effect puts a lower bound on W2

∞

(
µν,X̃τn , µX̃τn

)
which we believe only

disappears for ν below a certain threshold. This could provide an answer for why the O(ν)
convergence is not visible in the numerics at later times for ν > 10−6.
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Chapter 5

Conclusion

5.1 Summary of Results

We have explored a model for self-organization of autonomous particles in spatial do-
mains with boundaries, where the motion of particles is determined by competing particle-
particle interactions, external forces and Brownian motion. The addition of Brownian mo-
tion at the particle level, or linear diffusion at the continuum, is motivated by the dynamic
evolution into unstable equilibria seen in the model without diffusion [18, 19]. We have
analyzed equilibria of the model at the continuum level (Ch. 2), extending and adding to
similar results in free space found in [10]. The analysis is complemented by a series of
numerical methods and experiments (Ch. 3) designed to motivate researchers to investigate
challenging parameter regimes, such as small diffusion, large attraction, and/or low reg-
ularity of the potentials K and V . In correspondence with the plain aggregation model,
we have also established the zero-diffusion limit numerically (Ch. 4) in order to motivate
further numerical exploration of aggregation-diffusion phenomena using stochastic particle
methods, the analysis of which is still in its infancy, especially for interacting reflected SDEs.

5.1.1 Existence of Global Minimizers

By exploiting the underlying gradient flow structure of model (1.20), in Chapter 2 we
analyze equilibria of the model as critical points of the associated energy functional Eν

defined in (1.24). Compared to the model in free space (1.18), we find that the linearly-
diffusive aggregation system in domains with boundaries (1.20) retains the condition for
non-existence of global minimizers found in [10] (Theorem 2.6), up to a factor of d, but
that more is needed to guarantee existence of a global minimizer due to the escaping mass
phenomenon (Theorems 2.13 and 2.15). As such, we find that in addition to bounding the
energy below, existence of global minimizers in general domains D requires that mass be
suitably contained by an external potential V , unless D is sufficiently symmetric, as detailed
in Theorems 2.18 and 2.19. To the best of our knowledge, such metastable escaping mass
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phenomena have not previously been documented.

5.1.2 Computation of Critical Points

Due to the multiple instances of metastability in the aggregation-diffusion model (as
well as escaping mass, see metastable mass transfer in [15]), it is desirable to compute
equilibria directly in a time-independent manner. As such, in Chapter 3 we introduce a
fixed-point method and a Newton continuation method for computing critical points of Eν

directly from the Euler-Lagrange equation. For comparison with dynamics, we also detail
an implicit-explicit finite-difference scheme for solving the PDE (1.20). Examples are given
for D = [0, L], although extension to general bounded tensor grids is possible.

These methods allow one to examine several limiting cases for the parameters at play
in the model. If one wishes to compute critical points for ν � 1, the Newton iterator
should be employed with continuation on ν, followed by the fixed-point iterator to resolve
decay properties of the solution. Due to its stability with respect to time-step, the PDE
solver may also be used to efficiently translate the solution to its final centre of mass under
the external potential V before employing the fixed-point iterator. Overall, the fixed-point
iterator is seen to be the most robust in producing solutions to the Euler-Lagrange equation.
The regularizing effect of the e−x term allows for treatment of interaction potentials K with
large attraction, and since the method does not require computation of derivatives, it is well
suited for experimentation with K and V at low regularities. To the best of our knowledge,
(i) numerical implementation of the Euler-Lagrange equation in the form (2.8) and (ii)
analysis of the integro-differential equation (3.4), are both new developments with potential
for further analysis and use in simulations.

5.1.3 Zero-Diffusion Limit

Here we numerically verify that the distance between the diffusive and non-diffusive
particle systems Xt and Xν

t , respectively, behaves as predicted from Theorem 4.3. That is,
we find that numerically the stochastic particle system Xν

t converges to the deterministic
particle system Xt in expectation as ν → 0 with the predicted O(ν) convergence rate, when
the domain is bounded and convex. This means that we can expect numerical simulations
of the linearly-diffusive aggregation model at the stochastic particle level to be controllably
close to the dynamics of the plain aggregation model. Such verification is meant to con-
vince readers that (i) linear diffusion (Brownian motion at the particle level) is a robust
regularization of the plain aggregation model, both analytically and in practice, and (ii)
stochastic particle numerics are a valid and efficient way to explore perturbations of the
plain aggregation model induced by small noise.
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5.2 Future Directions

5.2.1 Identifying Minimizers

It is well known (see [4, 18, 10]) that the energy E associated with the plain aggregation
model enjoys a convenient test for minimizers: ρ is a minimizer of E if and only if

(i) K ∗ ρ(x) + V (x) = λ on supp (ρ), and

(ii) K ∗ ρ(x) + V (x) ≥ λ on D ∩ (supp (ρ))c,

where λ is a contant. The first condition is the Euler-Lagrange equation, while the second
condition identifies a critical point as a minimizer. Since supp (ρ) = D for minimizers of
Eν , condition (ii) no longer applies in the case of aggregation with linear diffusion, thus we
have no simple way to check that a given critical point is a minimizer. An immediate future
direction would be to analyze the second variation of the energy to assess the stability of
critical points. A Wp-r local minimizer ρ satisfies

d2

dt2

∣∣∣∣∣
t=0

Eν [ρ+ t(η − ρ)] ≥ 0 for all η ∈ Bp (ρ, r) ,

which implies ∫
D

(K ∗ (ρ− η)) (ρ− η)dx+ ν

∫
D

(ρ− η)2

ρ
dx ≥ 0. (5.1)

To ensure that (5.1) holds for all η ∈ Bp (ρ, r), one might look at the spectrum of the
convolution operator G(f) := K ∗ f over the space S =

{
f ∈ L1(D) :

∫
D f(x)dx = 0

}
, since

ρ − η ∈ S. If the spectrum of G is bounded below by some γ, then it appears that a
threshold diffusion coefficient νγ might exist such that for ν > νγ , every critical point is a
minimizer. Indeed, let ρ− η be an eigenfunction of G for such γ. Then

∫
D

(K ∗ (ρ− η)) (ρ− η)dx+ ν

∫
D

(ρ− η)2

ρ
dx = γ

∫
D

(ρ− η)2 dx+ ν

∫
D

(ρ− η)2

ρ
dx

=
∫
D

(ρ− η)2

ρ
(γρ+ ν) dx.

For ν > |γ| ‖ρ‖∞ it appears that the second variation is positive and ρ is a minimizer,
which suggests finding an upper bound on ‖ρ‖∞ over all critical points. This might be
possible with help from the fixed-point characterization of critical points (2.8). It would be
very beneficial to devise a stability criterion for equilibria that is practical, in analogy to
condition (ii) above, for equilibria of the plain aggregation model.

5.2.2 Uniqueness of Minimizers

The fixed-point characterization of critical points (2.8) might also play an even more
important role, that of determining cases for uniqueness of minimizers. In [3] the authors
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do just this on D = R and purely attractive K and V = 0, providing hope that similar
techniques can be extended to more general settings. At the time of writing this, we are
actively pursuing such an extension to D = [0,∞), where we hope to show that large enough
V enforces uniqueness of fixed points. Figure 3.6 displaying non-uniqueness in the absence
of V suggests that small diffusion might degrade the uniqueness of minimizers, which agrees
with the conjectured critical diffusion νγ above. In general, it seems possible to arrive at
regions of parameter space in which minimizers are unique simply by characterizing fixed
points, which would put the numerical fixed-point iteration method on stronger footing.

5.2.3 Connection to the Plain Aggregation Model

Finally, we return to the plain aggregation model. As mentioned above, investigation
of the aggregation model with linear diffusion was motivated by the formation of unstable
states µds in the plain aggregation model, which consist of a boundary aggregation and
free-swarm component with disjoint supports ([18], [19]). To this end, the driving question
is this: does the aggregation model with linear diffusion also evolve into unstable equilibria
in domains with boundaries?

On D = [ 0,∞) with V = 0 we can now provide an answer: for an equilibrium µds of
the plain aggregation model which contains a boundary aggregation, the fate of µds when
linear diffusion is “switched on” is entirely explained by the escaping mass phenomenon:
mass will begin to translate to the right, with timescale proportional to the mass density
at x = 0. Specifically, using the calculation in Remark 2.17, we see that

d

dt
M1(µνt ) = ν ρνt (0),

which must be positive for all time since supp (µνt ) = D. In this way, “regularization” by
linear diffusion has replaced an unstable state with a metastable state.

We have much less conclusive evidence on what happens in higher dimensions when
linear diffusion is added, only that such unstable disconnected equilibria can only form
when some external potential V is applied to push the swarm into the boundary [19]. We
see in Figure 3.8 the formation of “separated equilibria”, with a boundary aggregation and
free swarm connected by a thin layer of mass, which we expect to be minimizers. Perhaps
such separated states are a generic, and stable, effect of domains with boundaries. If so,
this might warrant investigation of specific biological swarms which frequently interact with
boundaries, such as red blood cells traveling down a blood vessel, or locust swarms sweeping
across the Sahara desert, to identify when, if ever, it is more favorable to remain in separate
aggregates, one being along the boundary.
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5.2.4 Numerical Methods for Aggregation-Diffusion Equations

For computation of steady states, the methods in Chapter 3 are sufficient for one di-
mension, but require at least one linear convolution per iteration and should be made more
efficient before scaling to higher dimensions. We do not offer any suggestions in this di-
rection; we remark only that the FFT was attempted to increase resolution and decrease
computation time, yet this attempt was unsuccessful due to lack of symmetry of the domain
together with non-decaying potentials K and V .

For dynamic simulations, stochastic particle methods do have their shortcomings and
other options are out there. In [9] the authors develop a deterministic “blob” particle method
for the aggregation equation with general diffusion, which avoids the need to average over
many simulations as is required with stochastic methods. A robust suite of finite volume
methods exists for simulation at the PDE level, although these only capture moderate dif-
fusion levels, for which the dynamics are not necessarily related to the plain aggregation
model. In general, all particle methods fail to resolve the decay of solutions, which for linear
diffusion is exponential, under small noise. Continuum PDE methods, while allowing for
positive mass over the entire (bounded) domain, in general fail to alleviate this problem,
as they impose stringent time-step restrictions (for instance, on the advective flux), even
when diffusion is handled implicitly.

In this way, for complicated geometries in dimensions 2 and greater, it appears that
robust and accurate numerical experimentation of small-noise aggregation-diffusion phe-
nomena is best carried out through stochastic particle methods; however, the analysis of
such methods is far from complete. A useful avenue for the aggregation-diffusion com-
munity would be to devise higher-order-in-time numerical methods for simulating systems
of interacting reflected diffusions which interact through potentials that are more singular
than globally Lipschitz, as is often required in numerical methods for SDEs.

5.3 Closing Remarks

The suggestions above for further research on the aggregation-diffusion model (1.20)
in domains with boundaries have not included making any changes to the model. There
is a multitude of ways in which the model can be improved. For biological applications,
non-radial and/or time-dependent interaction and external potentials could be used. Semi-
permeable boundaries and other non-conservative effects could be included to allow swarms
which grow or decay in time. Instead of an external potential, one might even consider
placing the swarm in a surrounding fluid. These suggestions all only involve one aggregating
species, which of course could be increased to include interactions between multiple species
(work has been done in this direction, but not in domains with boundaries). All in all,
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there is still a significant gap between the current aggregation-diffusion models and real-
world applications. We hope, by presenting results and methods within the framework of
random, nonlocally interacting systems in general spatial domains, that we have convinced
readers that it is possible to bridge this gap, and that we are on our way to understanding
the paradigm of self-organization using modern applied mathematics.
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Appendix A

Well-Posedness of the Fixed-Point
Map

In what follows, we will write ρ ∈ Pac(D) to mean dρ(x) = ρ(x) dx, using ρ interchange-
ably to refer to the measure and its density.

Theorem A.1. Let D ⊂ Rd be the closure of a bounded open set and ν > 0. In addition,
let V ∈ L∞(D) ∩ L1(D), and K ∈ L∞(D−D)∩L1(D−D). Define the map T : P(D)→
Pac(D) by

T (ρ) := 1
Z(ρ) exp

(
−1
ν
K ∗ ρ− 1

ν
V

)
where

Z(ρ) :=
∫
D

exp
(
−1
ν
K ∗ ρ(x)− 1

ν
V (x)

)
dx.

Then the integro-differential equation


∂

∂t
ρ(x, t) = T (ρ(x, t))− ρ(x, t), (x, t) ∈ D × (0,∞)

ρ(x, 0) = ρ0(x) ∈ Pac(D), x ∈ D,
(A.1)

has a unique solution ρ(x, t) ∈ L∞ ((0,∞),Pac(D)) for every ρ0 ∈ Pac(D).

Proof. We will show that T satisfies an L1-Lipschitz bound, which then allows us to use a
standard contraction mapping argument to deduce existence and uniqueness.

First note that since |K| is bounded on D −D, we can write K = K̃ +M for

M = min
z∈(D−D)

K(z)
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such that K̃ is non-negative. We now deduce some basic estimates. Note that for any
ρ ∈ Pac(D) we have

K ∗ ρ(x) =
∫
D
K(x− y)ρ(y) dy =

∫
D
K̃(x− y)ρ(y) dy +M

which implies, together with the positivity of K̃, that

M ≤ K ∗ ρ ≤
∥∥∥K̃∥∥∥

L∞(D−D)
+M. (A.2)

From this we have ∥∥∥∥exp
(
−1
ν
K ∗ ρ

)∥∥∥∥
L∞(D)

≤ exp
(
−M
ν

)
(A.3)

and ∥∥∥∥exp
(
−1
ν
K ∗ ρ

)∥∥∥∥
L∞(D)

≥ exp
(
−M
ν
− 1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)
, (A.4)

where (A.4) provides a lower bound for Z:

Z(ρ) =
∫
D

exp
(
−1
ν
K ∗ ρ− 1

ν
V

)
dx

=
∫
D

exp
(
−M
ν
− 1
ν
K̃ ∗ ρ− 1

ν
V

)
dx

≥ exp
(
−M
ν
− 1
ν

∥∥∥K̃ ∗ ρ∥∥∥
L∞(D)

)(∫
D

exp
(
−1
ν
V

)
dx

)
and so

Z(ρ) ≥ exp
(
−M
ν
− 1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)∥∥∥∥exp
(
−1
ν
V

)∥∥∥∥
L1(D)

. (A.5)

For ρ1, ρ2 ∈ Pac(D) we also have:∥∥∥∥exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)
− exp

(
−1
ν
K ∗ ρ2 −

1
ν
V

)∥∥∥∥
L1(D)

≤
∥∥∥∥exp

(
−1
ν
V

)∥∥∥∥
L1(D)

∥∥∥∥exp
(
−1
ν
K ∗ ρ1

)
− exp

(
−1
ν
K ∗ ρ2

)∥∥∥∥
L∞(D)

,

which allows us to bound the difference in the normalization factors:
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|Z(ρ1)− Z(ρ2)| =
∣∣∣∣∫
D

exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)
dx−

∫
D

exp
(
−1
ν
K ∗ ρ2 −

1
ν
V

)
dx

∣∣∣∣ (A.6)

≤
∥∥∥∥exp

(
−1
ν
K ∗ ρ1 −

1
ν
V

)
− exp

(
−1
ν
K ∗ ρ2 −

1
ν
V

)∥∥∥∥
L1(D)

(A.7)

≤
∥∥∥∥exp

(
−1
ν
V

)∥∥∥∥
L1(D)

∥∥∥∥exp
(
−1
ν
K ∗ ρ1

)
− exp

(
−1
ν
K ∗ ρ2

)∥∥∥∥
L∞(D)

.

(A.8)

Together this gives, for Z1 = Z(ρ1) and Z2 = Z(ρ2),

‖T (ρ1)− T (ρ2)‖1 =
∥∥∥∥Z−1

1 exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)
− Z−1

2 exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)∥∥∥∥
1

≤ Z−1
2

∥∥∥∥exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)
− exp

(
−1
ν
K ∗ ρ1 −

1
ν
V

)∥∥∥∥
1

+ |Z1 − Z2|
Z1Z2

∥∥∥∥exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)∥∥∥∥
1

= Z−1
2

∥∥∥∥exp
(
−1
ν
K ∗ ρ1 −

1
ν
V

)
− exp

(
−1
ν
K ∗ ρ2 −

1
ν
V

)∥∥∥∥
1

+ Z−1
2 |Z1 − Z2| ,

where we have used Z−1
1 =

(
Z−1

1 − Z−1
2

)
+ Z−1

2 together with the triangle inequality and
the definition of Z1. Now, employing the estimates (A.5) and (A.8), we arrive at

‖T (ρ1)− T (ρ2)‖1

≤ 2 exp
(
M

ν
+ 1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)∥∥∥∥exp
(
−1
ν
K ∗ ρ1

)
− exp

(
−1
ν
K ∗ ρ2

)∥∥∥∥
L∞(D)

, (A.9)

and using K = K̃ +M along with the Lipschitz property of e−x, we deduce that

‖T (ρ1)− T (ρ2)‖1 ≤ 2 exp
(1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)∥∥∥∥exp
(
−1
ν
K̃ ∗ ρ1

)
− exp

(
−1
ν
K̃ ∗ ρ2

)∥∥∥∥
L∞(D)

≤ 2
ν

exp
(1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)∥∥∥K̃ ∗ |ρ1 − ρ2|
∥∥∥
L∞(D)

≤ 2
ν

∥∥∥K̃∥∥∥
L∞(D−D)

exp
(1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)
‖ρ1 − ρ2‖L1(D) .

This shows that T has L1-Lipschitz constant LT satisfying

LT ≤
2
ν

∥∥∥K̃∥∥∥
L∞(D−D)

exp
(1
ν

∥∥∥K̃∥∥∥
L∞(D−D)

)
, (A.10)
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which does not depend on the external potential V (or M , the infimum of K).

Now, we will show that a unique solution exists for the integro-differential equation (A.1)
using a contraction argument. Integrating in t gives us the integral equation

ρ(x, t) = ρ(x, 0) +
∫ t

0
(T (ρ(x, s))− ρ(x, s)) ds := G(ρ(x, t)).

We will show that G is a contraction mapping on the space

X := L∞ ((0,∞),Pac(D))

under the norm

‖ρ1 − ρ2‖X := sup
t∈(0,∞)

e−(LT+1)t ‖ρ1(·, t)− ρ2(·, t)‖L1(D) .

First, note thatX is complete as it is a closed, convex subset of the space L∞
(
(0,∞), L1(D)

)
,

which is already complete under the given norm. Next, we show that G maps X back into
X: for every s ∈ (0,∞), we know that ρ(x, s) and T (ρ(x, s)) lie in Pac(D), and so∫

D
G(ρ(x, t)) dx =

∫
D
ρ(x, 0) dx+

∫ t

0

(∫
D
T (ρ(x, s)) dx−

∫
D
ρ(x, s) dx

)
ds = 1

for every t ∈ (0,∞). One can also show, by a bootstrapping argument, that G(ρ(x, t)) is
non-negative for every t. From here we note that

‖G(ρ1(·, t))−G(ρ2(·, t))‖L1(D) ≤ (LT + 1)
∫ t

0
‖ρ1(x, s)− ρ2(x, s)‖L1(D) ds,

and so

‖G(ρ1)−G(ρ2)‖X ≤ (LT + 1) sup
t∈(0,∞)

{
e−(LT+1)t

∫ t

0
‖ρ1(x, s)− ρ2(x, s)‖L1(D) ds

}
.

Choosing t∗ ∈ (0,∞) which realizes the supremum, we arrive at

‖G(ρ1)−G(ρ2)‖X ≤
(

(LT + 1)e−(LT+1)t∗
∫ t∗

0
e(LT+1)s ds

)
‖ρ1 − ρ2‖X

≤
(
1− e−(LT+1)t∗

)
‖ρ1 − ρ2‖X

< ‖ρ1 − ρ2‖X .

This shows that G is a contraction map on X. Existence and uniqueness of a solution follow
from the contraction mapping theorem.
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