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Abstract

Data-driven modeling refers to the use of measurement data to infer the parameters and struc-

ture of a mathematical model. While currently an active area research, data-driven modeling is

characterized by the cycle of hypothesis, observation, and conclusion, which is none other than the

scientific method, and can be traced back to Aristotle. For millenia, attempts have been made to

distill governing laws from the observations made on a given system, with the hope of both ex-

plaining the observations and predicting future observations. Major accomplishments in this vein

include Archimedes’ principle of buoyancy, Newtonian physics, and Röntgen’s X-rays. In each of

these cases, the observations of a peculiar phenomena, often accidental, compelled the researcher

to develop models. It is this map from observations to models that is at the heart of this thesis.

The paradigm shift in recent years, driven by increased computing power, availability of large

quantities of data, and the development of advanced mathematical techniques and algorithms,

has been to automate the process of data-driven modeling. In the terminology of hypothesis,

observation, and conclusion, automation can occur at the level of developing hypotheses about

possible mathematical models, or the design of experiments which differentiate between the many

possible models, or the map which takes experimental data and returns a mathematical model.

To complete the cycle, one could also consider algorithms which generate potential nearby models

given the model that is found to best fit the data.

In this dissertation, we explore algorithms which automate the map from observations to gov-

erning equations, specifically differential equations. Our key contribution is the development of

algorithms which identify differential equations in a weak form, which loosely refers to integrating

the differential equation against arbitrary functions. We will show that the weak form is an ideal

framework for identifying models from data if the criteria are robustness to data corruptions, highly

accurate model recovery when corruption levels are low, and computational efficiency.

We will demonstrate the superiority of our weak-form sparse identification for nonlinear dy-

namics algorithm (WSINDy) in the discovery of correct underlying model equations in a variety

of differential equation and data corruption scenarios. We start with the simplest case, of ordi-

nary differential equations (ODEs) depending only on time. We then move to partial differential

equations (PDEs), where state variables change in both time and space. We then bridge the two

previous regimes by considering interacting particle systems (IPSs), where the weak form is used

to identify a mean-field PDE using data that can also be described as a large system of ODEs.

Finally, we establish feasibility of weak-form identification of PDEs in an online context, where data

is streamed in. In the online setting, we demonstrate the possibility of identifying time-varying

models as well as models from data in four dimensions (3 space + 1 time).
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of E2(ŵ) = 0.013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Large-noise regime: Duffing Equation, β = 1. All correct terms were identified with

an error in the weights of E2(ŵ) = 0.0075 and a trajectory error of E2(ŵ) = 0.014. . 27
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Chapter 1

Introduction

1.1 Background

Stemming from Akaike’s seminal work in the 1970’s [1, 2], research into the systematic creation

of accurate mathematical models from data has progressed dramatically. In the last 40 years,

substantial developments have been made at the interface of applied mathematics, computer science,

and statistics to design algorithms for automated selection of models from data that are both

statistically rigorous and computationally efficient (see [21, 80, 85, 136, 145, 148] for both theory

and applications). An important achievement in this field is the sparse regression approach, which

formulates and subsequently discretizes the model selection problem in terms of a candidate basis of

functions evaluated at the given dataset, and utilizes a sparsification measure to avoid overfitting.

While similar approaches were already commonplace by 1975 for linear discrete-time system analysis

(see the textbook [29]), extension to nonlinear continuous dynamical systems wasn’t initiated until

1987 [35]. The subject then progressed slowly for two decades.

Notable improvements arose with the application of genetic algorithms in 2009 [124], where

the authors developed a symbolic regression algorithm and employ Pareto front analysis to select

sparse models for ordinary differential equations. In 2011, an algorithm was developed to select

models for catastrophe prediction using `1-minimization, the hallmark of compressive sensing [140].

Finally, this approach gained widespread popularity after its generalization as the SINDy algorithm

(Sparse Identification of Nonlinear Dynamics) [23], which demonstrated success in selected sparse

models across the spectrum of discrete and continuous nonlinear dynamical systems.

Sparse regression approaches to data-driven modeling are promising due to their potential gen-

eralizability, computational efficiency, and interpretability. Sparse models have the best shot at

avoiding overfitting, since they relax the requirement that the model must accurately approximate

the training data, if the resulting model is simple enough. From a practical standpoint, sparse

models have fewer operations and hence can be solved efficiently. Moreover, the output is a model

with recognizable terms selected from a known dictionary, which can be analyzed and controlled

using the wealth of techniques developed over the last few centuries.
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On the other hand, sparse regression is only as useful as the library of terms designed by the

user, and the ability of the algorithm to select the right terms, possibly amidst several seemingly

equivalent options. An alternative view that avoids these challenges is the approximation approach

(e.g. using deep neural networks), which seeks only to find a fast input-to-output map that approx-

imates the underlying phenomena, with no aspirations of interpreting what happens between input

and output. This is advantageous from the point of view of making fast predictions across many

inputs. The algorithm WSINDy discussed here (weak-form SINDy) lies distinctly on the side of

selecting sparse models. One can only expect that superior methods will arise at the intersection

of selection and approximation in the future, and we argue that WSINDy should be used to tackle

the selection component.

Notable variants of sparse regression-based model selection include [120], [23], and [122], where

the Douglas-Rachford algorithm, sequential-thresholding least squares (STLS), and basis pursuit

with denoising are used to successfully arrive at sparse models. The SINDy algorithm, upon which

our weak-form variant WSINDy is based, uses sequential-thresholding least-squares (STLS) to

enforce a sparse solution x ∈ Rn to a linear system Ax = b. While STLS provably converges to a

local minimizer of the desired functional F (x) = ‖Ax− b‖22 + λ2 ‖x‖0 in at-most n iterations [158],

methods of enforcing sparsity remain a focus of intense study [161, 5, 27, 34]. A primary driver of

continued developments in sparse regression for data-driven modeling is the highly-correlated nature

of resulting linear systems, rendering theoretical guarantees from compressed sensing unhelpful.

For example, there is no hope in general of guaranteeing a restricted isometry property or mutual

coherence (see [52] for a comprehensive review of compressed sensing) when each column of the

matrix is constructed from the same dataset.

In addition to the sparse regression approach adopted in SINDy, some of the primary techniques

for data-driven modeling include Gaussian process regression [109, 113], deep neural networks [91,

89, 88, 118, 141, 80, 32, 106, 79, 152], Bayesian inference [159, 160, 144, 145], and classical methods

from numerical analysis [69, 75, 150]. These approaches qualitatively differ in the interpretability of

the resulting data-driven dynamical system, computational efficiency of the algorithm, scope of the

algorithm, and its robustness to noise, scale separation, limited data, etc. For instance, a neural-

network based data-driven dynamical system does not easily lend itself to physical interpretation1.

Concerning the scope of an algorithm, several methods have been developed to discover models in

specific contexts, such as low-degree polynomial chaotic systems, cyclic ODEs, interacting particles,

Hamiltonian dynamics, and biochemical reaction networks [137, 123, 90, 149, 63]. Often these

limited-scope algorithms are amenable to analysis and are presented with some form of recovery

guarantee. In this dissertation, we have aimed to provide an algorithm of wide scope that is near the

state-of-the-art with respect to robustness to noise, computational efficiency, and interpretability.

1There have been efforts to address the interpretability of neural networks, see e.g. [104, 135, 115].
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1.2 Weak-Form Sparse Identification of Nonlinear Dynamics

A significant disadvantage of the vast majority of data-driven modeling methods, both in prac-

tice and in theory, is the requirement that pointwise derivatives of the data are either available or

can be accurately computed. This severely limits an algorithm’s robustness to noise and hence its

applicability to real world data. This dissertation is primarily concerned with relaxing this assump-

tion and providing rigorous justification for the weak formulation of the dynamics as a means to

circumvent this ubiquitous problem in model selection. Building off of the SINDy framework, we

present the robust discovery algorithm WSINDy (Weak-form SINDy), which operates under the

assumption that derivatives of the data are neither available nor computable, and that the only

prior knowledge of the governing equations is their inclusion in a large model library.

The use of integral equations for system identification was proposed as early as the 1980’s [35]

and was carried out in a sparse regression framework in [121] in the context of ODEs, however

neither works utilized the full generality of the weak form. Steps to alleviate pointwise deriva-

tive approximations are also taken by the authors of [112] and [151], where neural network-based

recovery schemes are combined with integral and abstract evolution equations to recover PDEs,

and in [143, 142], where the finite element-based method Variational System Identification (VSI) is

introduced to identify reaction-diffusion systems and uses backward Euler to approximate the time

derivative.

WSINDy is a method for discovering differential equations without the use of any pointwise

derivative approximations, black-box routines or conventional noise filtering. Through integration

by parts in both space and time against smooth compactly-supported test functions, WSINDy is

able to recover models from datasets with much higher noise levels, and PDEs from truly weak

solutions (see Figure 3.5.1 in Section 3.5, as well as interacting particle system examples in 4.5).

This works suprisingly well even as the signal-to-noise ratio approaches one (see Figure 3.5.3).

Furthermore, WSINDy achieves high-accuracy recovery in the low-noise regime, due to spectral

accuracy of the trapezoidal rule for smooth compactly supported functions (see Figure 2.2).

It should be noted that these overwhelming improvements resulting from a fully-weak identifi-

cation method were also been discovered independently by another group [114, 57] shortly before

WSINDy was released in May 2020. WSINDy offers several advantages over these alternative

frameworks. Firstly, we use a convolutional weak form which enables efficient model identification

using the Fast Fourier Transform (FFT). For measurement data with N points in each of the D+1

space-time dimensions (ND+1 total data points), the resulting algorithmic complexity of WSINDy

in the PDE setting is at worst O(ND+1 log(N)), in other words O(log(N)) floating point oper-

ations per data-point. Subsampling then greatly reduces the cost. Furthermore, our FFT-based

approach reveals a key mechanism behind the observed robustness to noise, namely that spectral

decay properties of test functions can be tuned to damp noise-dominated modes in the data, and we

develop a learning algorithm for test function hyperparameters based on this mechanism. WSINDy
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also utilizes scale invariance of the PDE and a modified STLS algorithm with automatic threshold

selection to recover models from (i) poorly-scaled data and (ii) large candidate model libraries.

These properties are what has enabled our weak-form method to thrive in the challenging scenarios

of interacting particle systems (Chapter 4) and online identification (Chapter 5), which were not

explored in [114, 57].

1.3 Dissertation Outline

Chapters 2-5 contain previously published or submitted work, and are presented here with little

modification. We include the original abstracts at the beginning of each chapter, as well as an

appendix following each chapter (note there is no overall appendix at the end of the dissertation).

In Chapter 2, we present WSINDy in the context of ordinary differential equations, content which

was submitted to SIAM: Multiscale Modeling and Simulation in June 2020 and published Septem-

ber 2021 [100]. We then demonstrate the wide scope of the weak-form methodology in Chapter 3,

which extends the original framework to partial differential equations. Chapter 3 was submitted

to the Journal of Computational Physics in July 2020 and published October 2021 [99]. In Chap-

ter 4 we demonstrate effectiveness of the weak-form in identifying stochastic interacting particle

system dynamics from particle trajectories by using mean-field PDE representations. Chapter 4

was submitted to Physica D: Nonlinear Phenomena in November 2021 and is currently in press

[98]. In Chapter 5 we provide a brief proof of concept for an online version of the algorithm, which

departs from previous approaches in the way that sparsity is enforced, but retains the PDE-level

implementation. Chapter 5 was recently accepted for publication in the Proceedings of Machine

Learning Research [101]. Chapters 2-4 were written in collaboration with my advisor David M.

Bortz, while Chapter 5 was written in collaboration with David M. Bortz and Emiliano Dall’Anese.

We now review the main findings of each chapter.

1.3.1 Chapter 2: WSINDy for ODEs

Applied to ODEs, the primary objective is demonstrate a crucial aspect of our weak-form

approach, that WSINDy is capable of identifying systems across a wide range of noise levels.

This is in contrast to strong-form methods, where the algorithm is required to change (e.g. the

differentiation method and denoising techniques) depending on the different noise levels. With

WSINDy we achieve both high-accuracy recovery for low-noise, and high-probability recovery for

high-noise, without changing the method. We also show that within the myriad possibilities for

weak formulations, a particular class of test functions offers suprising accuracy and robustness

to noise (see Figure (2.2) for accuracy and Figures (2.A.2)-(2.A.3) for robustness compared to

standard SINDy). We identify several important questions that arise in the automated selection of

test-functions and weak-form based variance reduction, and provide some preliminary answers.
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1.3.2 Chapter 3: WSINDy for PDEs

WSINDy truly shines in the PDE setting, where the weak-form is using to identify models from

solutions that can only be understood in a weak sense. Here model identification is often robust to

a staggering 50% noise (to be defined below). We find that the question of test function selection

is related to the Fourier spectrum of the dataset, which is revealed by posing the weak-form as

a convolution, and restricting the focus to separable test functions. (Initially, we developed the

convolutional form and separability for purely computational purposes.) We also introduce a simple

and interpretable way to select the sparsity threshold, leveraging the speed of the STLS algorithm,

and we introduce data rescaling into the algorithm to improve conditioning, especially in the face

of data with numerically disparate scales.

1.3.3 Chapter 4: WSINDy for IPSs

Harkening back to the author’s time as a masters student, we next develop WSINDy for stochas-

tic interacting particle systems (IPSs) by leveraging that the empirical measure of an IPS converges

in a suitable weak sense to the solution of an associated nonlocal PDE. We incorporate nonlocal

terms into the WSINDy PDE library, which are computed efficiently by performing convolutions

on low-rank representations of kernels, again using the FFT. Principally, this approach bridges an

important gap from trajectory data on finitely-many particles to identification of models in the

continuum limit. We show that this approach is effective at recovering homogenized PDEs directly

from particle data with highly-oscillatory diffusion, as well as nonlocal models with singular kernels.

1.3.4 Chapter 5: Online WSINDy

In the online setting, we restrict ourselves to the setting of limited storage capacity, streaming

data, and no ability to perform least-squares solves. The goal is to iteratively solve for the correct

model and track parameter values using snapshots in time of the solution to the underlying PDE.

In this setting, we explore models with time-varying coefficients, finding that the algorithm can

track an abruptly changing wavespeed, and large datasets that cannot be processed easily on a

laptop.
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Chapter 2

WSINDy for ODEs

Abstract

We present a novel weak formulation and discretization for discovering governing equations from

noisy measurement data. This method of learning differential equations from data fits into a new

class of algorithms that replace pointwise derivative approximations with linear transformations and

variance reduction techniques. Compared to the standard SINDy algorithm presented in [23], our

so-called Weak SINDy (WSINDy) algorithm allows for reliable model identification from data with

large noise (often with ratios greater than 0.1) and reduces the error in the recovered coefficients

to enable accurate prediction. Moreover, the coefficient error scales linearly with the noise level,

leading to high-accuracy recovery in the low-noise regime. Altogether, WSINDy combines the

simplicity and efficiency of the SINDy algorithm with the natural noise reduction of integration, as

demonstrated in [121], to arrive at a robust and accurate method of sparse recovery.
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2.1 Problem Statement

Consider a first-order dynamical system in D dimensions of the form

d

dt
x(t) = F(x(t)), x(0) = x0 ∈ RD, 0 ≤ t ≤ T, (2.1.1)

and measurement data y ∈ RM×D given at M timepoints t = (t1, . . . , tM )T by

ymd = xd(tm) + εmd, m ∈ [M ], d ∈ [D],

where throughout we use the bracket notation [M ] := {1, . . . ,M}. The variable ε ∈ RM×D repre-

sents a matrix of i.i.d. measurement noise. The focus of this chapter is the reconstruction of the

dynamics (2.1.1) from the measurements y.

The SINDy algorithm (Sparse Identification of Nonlinear Dynamics [23]) has been shown to be

successful in solving this problem for sparsely represented nonlinear dynamics when noise is small

and dynamic scales do not vary across multiple orders of magnitude. This framework assumes that

the function F : RD → RD in (2.1.1) is given component-wise by

Fd(x(t)) =

J∑
j=1

w?
jd fj(x(t)) (2.1.2)

for some known family of functions (fj)j∈[J ] and a sparse weight matrix w? ∈ RJ×D. The problem

is then transformed into solving for w? by building a data matrix Θ(y) ∈ RM×J given by

Θ(y)mj = fj(ym), ym := (ym1, . . . ,ymD),

so that the candidate functions are directly evaluated at the noisy data. Solving (2.1.1) for F then

reduces to identifying a sparse weight matrix ŵ such that

ẏ ≈ Θ(y) ŵ (2.1.3)

where ẏ is the numerical time derivative of the data y. Sequential-thresholding least squares is

then used to arrive at a sparse solution.

2.2 Weak SINDy

We approach the problem of system identification (2.1.3) from a non-standard perspective by

utilizing the weak form of the differential equation. Recall that for any smooth test function

φ : R → R (absolutely continuous is sufficient) and interval (a, b) ⊂ [0, T ], equation (2.1.1) admits
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the weak formulation

φ(b)x(b)− φ(a)x(a)−
∫ b

a
φ′(u) x(u) du =

∫ b

a
φ(u) F(x(u)) du, 0 ≤ a < b ≤ T. (2.2.1)

With φ = 1, we arrive at the integral equation of the dynamics explored in [121]. If we instead take

φ to be non-constant and compactly supported in (a, b), we arrive at

−
∫ b

a
φ′(u) x(u) du =

∫ b

a
φ(u) F(x(u)) du. (2.2.2)

Assuming a representation of the form (2.1.2), we then define the generalized residual R(w;φ) for

a given test function φ by replacing F with a candidate element from the span of (fj)j∈[J ] and x

with y as follows:

R(w;φ) :=

∫ b

a

φ′(u) y(u) + φ(u)

 J∑
j=1

wj fj(y(u))

 du. (2.2.3)

Clearly, with w = w? and y = x(t) we have R(w;φ) = 0 for all φ compactly-supported in

(a, b); however, y is a discrete set of data, hence (2.2.3) can at best be approximated numerically.

Measurement noise then presents a significant barrier to accurate indentification of w?.

2.2.1 Method Overview

For analogy with traditional Galerkin methods, consider the forward problem of solving a

dynamical system such as (2.1.1) for x. The Galerkin approach is to seek a solution x represented

in a chosen trial basis (fj)j∈[J ] such that the residual R, defined by

R =

∫
φ(t)(ẋ(t)− F(x(t))) dt,

is minimized over all test functions φ living in the span of a given test function basis (φk)k∈[K].

If the trial and test function bases are known analytically, inner products of the form 〈fj , φk〉
appearing in the residual can be computed exactly. Thus, the computational error results only

from representing the solution in a finite-dimensional function space.

The method we present here can be considered a data-driven Galerkin method of solving for F

where the trial “basis” is given by the set of gridfunctions (fj(y))j∈[J ] evaluated at the data and

only the test-function basis (φk)k∈[K] is known analytically. In this way, inner products appearing

in R(w;φ) must be approximated numerically, implying that the accuracy of the recovered weights

ŵ is ultimately limited by the quadrature scheme used to discretize inner products. Using Lemma

1 below, we show that the correct coefficients w? may be recovered to effective machine precision

accuracy (given by the tolerance of the forward ODE solver) from noise-free trajectories y by
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discretizing (2.2.2) using the trapezoidal rule and choosing φ to decay smoothly to zero at the

boundaries of its support. Specifically, in this chapter we demonstrate this fact by choosing test

functions from a particular family of unimodal piecewise polynomials S defined in (2.2.6).

Having chosen a quadrature scheme, the next accuracy barrier is presented by measurement

noise, introducing randomness into the residuals R(w;φ). Numerical integration then couples

residuals R(w;φ1) and R(w;φ2) whenever φ1 and φ2 have overlapping support. In this way,

R(w;φ) does not have an ideal error structure for least squares, but may be amenable to generalized

least squares. Below we analyze the distribution of the residuals R(w;φ) to arrive at a generalized

least squares approach where an approximate covariance matrix can be computed directly from

the test functions. This analysis also suggests that placing test functions near steep gradients

in the dynamics may improve recovery, hence we develop a derivative-free method for adaptively

clustering test functions near steep gradients.

Remark 1. The weak formulation of the dynamics introduces a wealth of information: given M

timepoints t = (tm)m∈[M ], equation (2.2.2) affords K = M(M − 1)/2 residuals over all possible

supports (a, b) ⊂ t × t with a < b. Of course, one could also assimilate the responses of multiple

families of test functions
(
{φ1

k}k∈[K1], {φ2
k}k∈[K2], . . .

)
; however, the computational complexity of

such an exhaustive approach quickly becomes intractable. We stress that even with large noise, our

proposed method identifies the correct nonlinearities with accurate weight recovery while keeping

the number of test functions lower than the number of timepoints (K < M).

2.2.2 Algorithm: Weak SINDy

We state here the Weak SINDy algorithm in full generality. We propose a generalized least

squares approach with approximate covariance matrix Σ. Below we derive a particular choice of

Σ which utilizes the action of the test functions (φk)k∈[K] on the data y. Sequential-thresholding

on the weight coefficients w with thresholding parameter λ is used to enforce sparsity, where

λ ≤ minw? 6=0 |w?| is necessary for recovery. Lastly, an `2-regularization term with coefficient γ is

included for problems involving rank deficiency. Methods of choosing optimal values of λ and γ

directly from a given dataset do exist, for instance by selecting the optimal position in a Pareto

front [34], however this is not the focus of our current study and thus we select values that work

across multiple examples. Specifically, in the experiments below we set γ = 0 with the exception

of the nonlinear pendulum and the five-dimensional linear system, examples which show that reg-

ularization can be used to discover dynamics from excessively large libraries. For noise-free data

the algorithm is only weakly dependent on λ and so we use λ = 0.001, while for noisy data we set

λ = 1
4 minw? 6=0 |w?|.

ŵ = WSINDy
(
y, t ; (φk)k∈[K], (fj)j∈[J ], Σ, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
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2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′km = ∆tφ′k(tm)

3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that Gkj = 〈φk, fj(y)〉
and bkd = −〈φ′k,yd〉

4. Solve the generalized least squares problem with `2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.

With this as our core algorithm, we can now consider a residual analysis (Section 2.2.3) leading to

a generalized least squares framework. We can also develop theoretical results related to the test

functions (Section 2.2.4), yielding a more thorough understanding of the impact of using uniform

(Section 2.2.4) and adaptive (Section 2.2.4) placement of test functions along the time axis.

2.2.3 Residual Analysis

Performance of WSINDy is determined by the behavior of the residuals

R(w;φk) := (Gw − b)k ∈ R1×D,

denoted R(w) ∈ RK×D for the entire residual matrix. Here we analyze the residual for autonomous

F to highlight key aspects for future analysis, as well as to arrive at an appropriate choice of

approximate covariance Σ. We also provide a heuristic argument in favor of placing test functions

near steep gradients in the dynamics.

A key difficulty in recovering the true weights w? is that for nonlinear systems the residual

evaluated at the true weights w? is biased: E[R(w?)] 6= 0. Any minimization of R thus introduces

a bias in the recovered weights ŵ. Nevertheless, we can understand how different test functions

impact the residual by linearizing around the true trajectory x(t) and isolating the dominant error

terms:

R(w;φk) = 〈φk, Θ(y)w〉+
〈
φ′k, y

〉
= 〈φk, Θ(y)(w −w?)〉+ 〈φk, Θ(y)w?〉+

〈
φ′k, y

〉
= 〈φk, Θ(y)(w −w?)〉+ 〈φk, F(y)− F(x)〉+

〈
φ′k, ε

〉
+ Ik

= 〈φk, Θ(y)(w −w?)〉︸ ︷︷ ︸
R1

+ 〈φk, ε∇F(x)〉︸ ︷︷ ︸
R2

+
〈
φ′k, ε

〉︸ ︷︷ ︸
R3

+Ik +O(ε2)

where ∇F (x)dd′ =
∂Fd′
∂xd

(x). The errors manifest in the following ways:
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� R1 is the misfit between w and w?

� R2 results from measurement error in trial gridfunctions: fj(y) = fj(x + ε) 6= fj(x)

� R3 results from replacing x with y = x + ε in the left-hand side of (2.2.2)

� Ik is a deterministic integration error

� O(ε2) is the remainder term in the truncated Taylor expansion of F(y) around x:

F(ym) = F(x(tm)) + εm∇F(x(tm)) +O(|εm|2).

Clearly, recovery of F when ε = 0 is straightforward: R1 and Ik are the only error terms, thus one

only needs to select a quadrature scheme that ensures that the integration error Ik is negligible

and ŵ = w? will be the minimizer. A primary focus of this study is the use of a specific family

of piecewise polynomial test functions S defined below for which the trapezoidal rule is highly

accurate (see Lemma 1). Figure 2.2 demonstrates this fact on noise-free data.

For ε > 0, accurate recovery of F requires one to choose hyperparameters that exemplify

the true misfit term R1 by enforcing that the other error terms are of lower order. We look for

(φk)k∈[K] and Σ = CCT that approximately enforce C−1R(w?) ∼ N (0, σ2I), justifying the least

squares approach. In the next subsection we address the issue of approximating the covariance

matrix, providing justification for using Σ = V′(V′)T . The following subsection provides a heuristic

argument for how to reduce corruption from the error terms R2 and R3 by placing test functions

near steep gradients in the data.

Approximate Covariance Σ

Neglecting the deterministic integration error, which can be made small (see Lemma 1 below),

and higher-order noise terms, the residual evaluated at the true weights is approximately

R(w?;φk) ≈ R2 +R3

where E [R2] = E [R3] = (0, . . . , 0) implies that E[R(w?)] = 0 to leading order. Given the variances

V [R2] = V [〈φk, ε∇F(x)〉] = ∆t σ2
(∥∥φk |∇F1(x)|

∥∥2

2
, . . . ,

∥∥φk |∇FD(x)|
∥∥2

2

)
and

V [R3] = V
[〈
φ′k, ε

〉]
= ∆t σ2

(∥∥φ′k∥∥2

2
, . . . ,

∥∥φ′k∥∥2

2

)
,
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the true distribution of R(w?) depends on F, which is not known a priori. If it holds that ‖φ′k‖2 �
‖φk |∇Fd(x)|‖2, d ∈ [D], a leading order approximation to Cov(R(w?)) is

Σ := V′
(
V′
)T ∝ Cov(R3),

using that Cov(R3)ij = ∆tσ2
〈
φ′i, φ

′
j

〉
. For this reason, we employ localized test functions and

adopt the heuristic Σ = V′(V′)T below.

Adaptive Refinement

Next we show that by localizing φk around large |ẋ|, we get an approximate cancellation of the

error terms R2 and R3. Consider the one-dimensional case (D = 1) where m is an arbitrary time

index and ym = x(tm)+ε is an observation. When |ẋ(tm)| is large compared to ε, we approximately

have

ym = x(tm) + εm ≈ x(tm + δt) ≈ x(tm) + δtF(x(tm)) (2.2.4)

for some small δt, i.e. the perturbed value ym lands close to the true trajectory x at the time

tm + δt. To understand the heuristic behind this approximation, let tm + δt be the point of

intersection between the tangent line to x(t) at tm and x(tm) + ε. Then

δt =
ε

ẋ(tm)
,

hence |ẋ(tm)| � ε implies that x(tm) + ε will approximately lie on the true trajectory. As well,

regions where |ẋ(tm)| is small will not yield accurate recovery in the case of noisy data, since

perturbations are more likely to exit the relevant region of phase space. If we linearize F using the

approximation (2.2.4) we get

F(ym) ≈ F(x(tm)) + δtF′(x(tm))F(x(tm)) = F(x(tm)) + δtẍ(tm). (2.2.5)

Assuming φk is sufficiently localized around tm, (2.2.4) also implies that

〈
φ′k,x

〉
+
〈
φ′k, ε

〉︸ ︷︷ ︸
R3

=
〈
φ′k,y

〉
≈
〈
φ′k,x

〉
+ δt

〈
φ′k,F(x)

〉
,

hence R3 ≈ δt 〈φ′k,F(x)〉, while (2.2.5) implies

〈φk,Θ(y)w〉 = 〈φk,Θ(y)(w −w?)〉︸ ︷︷ ︸
=R1

+ 〈φk,F(y)〉

≈ 〈φk,Θ(y)(w −w?)〉+ 〈φk,F(x)〉+ δt 〈φk, ẍ〉︸ ︷︷ ︸
≈R2

= 〈φk,Θ(y)(w −w?)〉+ 〈φk,F(x)〉 − δt
〈
φ′k,F(x)

〉
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having integrated by parts. Collecting the terms together yields that the residual takes the form

R(w;φk) =
〈
φ′k,y

〉
+ 〈φk,Θ(y)w〉 ≈ R1,

and we see that R2 and R3 have effectively cancelled. In higher dimensions this interpretation

does not appear to be as illuminating, but nevertheless, for any given coordinate xd, it does hold

that terms in the error expansion vanish around points tm where |ẋd| is large, precisely because

xd(tm) + ε ≈ xd(tm + δt).

2.2.4 Test Function Basis (φk)k∈[K]

Here we introduce a test function space S and quadrature scheme to minimize integration

errors and enact the heuristic arguments above, which rely on φk having fast decay to its support

boundaries and sufficiently localized to ensure ‖φ′k‖
2
2 � ‖φk‖

2
2. We define the space S of unimodal

piecewise polynomials of the form

φ(t) =

C(t− a)p(b− t)q t ∈ [a, b],

0 otherwise,
(2.2.6)

where (a, b) ⊂ t× t satisfies a < b and p, q ≥ 1. The normalization

C =
1

ppqq

(
p+ q

b− a

)p+q
ensures that ‖φ‖∞ = 1. Functions φ ∈ S are non-negative, unimodal, and compactly supported in

[0, T ] with bmin{p, q}c − 1 continuous derivatives. Larger p and q imply faster decay towards the

endpoints of the support. For p = q, we refer to p as the degree of φ.

To ensure the integration error in approximating inner products 〈fj , φk〉 is negligible, we rely

on the following lemma, which provides a bound on the error in discretizing the weak derivative

relation

−
∫
φ′f dt =

∫
φf ′ dt (2.2.7)

using the trapezoidal rule for compactly supported φ. Following the lemma we introduce two

strategies for choosing the parameters of the test functions (φk)k∈[K] ⊂ S.

Lemma 1 (Numerical Error in Weak Derivatives). Let f, φ have continuous derivatives of order p

and define tj = a+ j b−aN = a+ j∆t. If φ has roots φ(a) = φ(b) = 0 of multiplicity p, then

∆t

2

N−1∑
j=0

[
g(tj) + g(tj+1)

]
= O(∆tp+1), (2.2.8)
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where g(t) = φ′(t)f(t) + φ(t)f ′(t). In other words, the composite trapezoidal rule discretizes the

weak derivative relation (2.2.7) to order p+ 1.

Proof. This is a simple consequence of the Euler-Maclaurin formula. If g : [a, b] → C is a smooth

function, then the following asymptotic expansion holds:

∆t

2

N−1∑
j=0

[g(tj) + g(tj+1)] ∼
∫ b

a
g(t) dt+

∞∑
k=1

∆t2kB2k

(2k)!

(
g(2k−1)(b)− g(2k−1)(a)

)
,

where B2k are the Bernoulli numbers. The asymptotic expansion provides corrections to the trape-

zoidal rule that realize machine precision accuracy up until a certain value of k, after which terms

in the expansion grow and the series diverges [36, Ch. 3]. In our case, g(t) = φ′(t)f(t) + φ(t)f ′(t)

where the root conditions on φ imply that∫ b

a
g(t) dt = 0 and g(k)(b) = g(k)(a) = 0, 0 ≤ k ≤ p− 1.

So for p odd, we have that

∆t

2

N−1∑
j=0

[g(tj) + g(tj+1)] ∼
∞∑

k=(p+1)/2

∆t2kB2k

(2k)!

(
g(2k−1)(b)− g(2k−1)(a)

)
=

Bp+1

(p+ 1)!
(φ(p)(b)f(b)− φ(p)(a)f(a))∆tp+1 +O

(
∆tp+2

)
.

For even p, the leading term is O(∆tp+2) with a slightly different coefficient.

For φ ∈ S with p = q, the exact leading order error in term in (2.2.8) is

2pBp+1

p+ 1

(
f(b)− f(a)

)
∆tp+1, (2.2.9)

which is negligible for a wide range of reasonable p and ∆t values. The Bernoulli numbers eventually

start growing like pp, but for smaller values of p they are moderate. For instance, with ∆t = 0.1

and f(b) − f(a) = 1, this error term is o(1) up until p = 85, where it takes the value 0.495352,

while for ∆t = 0.01, the error is below machine precision for all p between 7 and 819. For these

reasons, in what follows we choose test functions (φk)k∈[K] ⊂ S and discretize all integrals using the

trapezoidal rule. Unless otherwise stated, each function φk satsifies p = q and so is fully determined

by the tuple {pk, ak, bk} indicating its polynomial degree and support. In the next two subsections

we propose two different strategies for determining φk using the data y.
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Strategy 1: Uniform Grid

The simplest strategy for choosing a basis of test functions (φk)k∈[K] ⊂ S is to place φk uniformly

on the interval [0, T ] with fixed degree p and fixed support size

L := #{t ∩ supp(φk)}

(i.e. L is the number of timepoints in t that φk is supported on). The triple (L, p,K) then defines

the scheme, where each piece effects the distribution of the residual R(w).

Step 1: Choosing L: Heuristically, the support size of φk relates to the Fourier transform of the data.

If supp(φk) is small compared to the dominant wavemodes in the dynamics, then high-frequency

noise will dominate the values of the inner products 〈φ′k,y〉. If supp(φk) is much larger than the

dominant wavemodes, then too much averaging may occur, leading to unresolved dynamics. A

natural choice is then to set L equal to the period of a known active wavemode1 k:

L =

⌊
1

∆t

2π

(2πT/k)

⌋
=

⌊
M

k

⌋
.

In the noise-free and small-noise experiments below we set L = bM25c and leave optimal selection of

L based on Fourier analysis to future work.

Step 2: Determining p: In light of the derivation above of the approximate covariance matrix

Σ = V′(V′)T , we define the parameter ρ := ‖φ′k‖2 / ‖φk‖2, which serves as an estimate for the ratio√
V[R3]/V[R2] between the standard deviations of the two dominant error terms R3 and R2 in the

residual R(w?). Larger ρ indicates better agreement with the approximate covariance matrix Σ,

since Σ ∝ Cov(R3). Furthermore, for φk ∈ S we have the exact formula

ρ2 =
8p2

(b− a)2

(
Γ(2p− 1)Γ(2p+ 1

2)

Γ(2p+ 1)Γ(2p+ 3
2)

)
=

p

(b− a)2

(
4p+ 1

p− 1
2

)
,

where Γ(z) =
∫∞

0 tz−1e−t dt is the Gamma function. Given ρ2 ≥ (5 + 2
√

6)/(b− a)2, a polynomial

degree p may be selected from ρ using the formula

p =

⌊
1

8

(
((b− a)2ρ2 − 1) +

√
((b− a)2ρ2 − 1)2 − 8(b− a)2ρ2

)⌋
.

Step 3: Determining K: Next we introduce the shift parameter s ∈ [0, 1] defined by

s := φk(t
∗) s.t. φk(t

∗) = φk+1(t∗),

1Such that Fk(y) :=
∑M−1
j=0 yme

−2πijk/M is not negligible.
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which determines K from p and L. In words, s is the height of intersection between φk and φk+1

and measures the amount of overlap between successive test functions. More overlap increases the

correlation between rows in the residual R(w) and hence leads to larger off-diagonal elements in the

covariance matrix Σ. Larger s implies that neighboring functions overlap on more points, with s = 1

indicating that φk = φk+1. Specifically, neighboring test functions overlap on bL(1 −
√

1− s1/p)c
timepoints. In Figures 2.3 and 2.4 we vary the parameters ρ and s and observe that results agree

with intuition: larger ρ (better agreement with Σ) and larger s (more test functions) lead to better

recovery of w?. We summarize the uniform grid algorithm below.

ŵ = WSINDy UG
(
y, t ; (fj)j∈[J ], L, ρ, s, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′km = ∆tφ′k(tm)

with the test functions (φk)k∈[K] determined by L, ρ, s as described above

3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that Gkj = 〈φk, fj(y)〉
and bkd = −〈φ′k,yd〉

4. Compute approximate covariance and Cholesky factorization Σ = V′(V′)T = CCT

5. Solve the generalized least squares problem with `2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.

Strategy 2: Adaptive Grid

Motivated by the arguments above, we now introduce an algorithm for constructing a test func-

tion basis localized near points of large change in the dynamics. This occurs in three steps: 1)

construct a weak approximation to the derivative of the dynamics v ≈ ẋ, 2) sample K points c

from a cumulative distribution ψ with density proportional to the total variation |v|, 3) construct

test functions centered at c using a width-at-half-max parameter rwhm to determine the parameters

(pk, ak, bk) of each function φk. Each of these steps is numerically stable and carried out indepen-

dently along each coordinate of the dynamics. A visual diagram is provided in Figure 2.1.

Step 1: Weak Derivative Approximation: Define v := −V′w y, where the matrix −V′w enacts a

linear convolution with the derivative of a chosen test function φ ∈ S of degree pw and support size
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Test function φ and derivative −φ′ used to
compute v

Approximate total variation |v|

Cumulative distribution ψ =
∫ t |v| dt Data y from the Duffing equation and result-

ing grid c

Figure 2.1: Adaptive grid construction used on data from the Duffing equation with 10% noise
(σNR = 0.1). As desired, the centers c are clustered near steep gradients in the dynamics despite
large measurement noise. (Note −φ(t)′/10 is plotted in the upper-left instead of −φ(t)′ in order to
visualize both φ and φ′.)
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Lw so that

vm = −
〈
φ′,y

〉
= 〈φ, ẏ〉 ≈ ẏm.

The parameters Lw and pw are chosen by the user, with Lw = 5 and pw ≥ 2 corresponding to taking

a centered finite difference derivative with 3-point stencil. Smaller pw results in more smoothing

and minimizes the corruption from noise while still accurately locating steep gradients in the dy-

namics. For the examples below we arbitrarily2 use pw = 2 and Lw = 17.

Step 2: Selecting c: Having computed v, define ψ to be the cumulative sum of |v| normalized so

that maxψ = 1. In this way ψ is a valid cumulative distribution function with density proportional

to the total variation of y. We then find c by sampling from ψ. Let U = [0, 1
K ,

2
K , . . . ,

K−1
K ] with

K being the number of the test functions, we then define c = ψ−1(U), or numerically,

ck = min{t ∈ t : ψ(t) ≥ Uk}.

This stage requires the user to select the number of test functions K.

Step 3: Construction of Test Functions (φk)k∈[K]: Having chosen the location ck of the centerpoint

for each test function φk, we are left to choose the degree pk of the polynomial and the supports

[ak, bk]. The degree is chosen according to the width-at-half-max parameter rwhm, which specifies

the difference in timepoints between each center ck and argt{φk(t) = 1/2}, while the supports are

chosen such that φk(bk −∆t) = 10−16. This gives us a nonlinear system of two equations in two

unknowns which can be easily solved (i.e. using MATLAB’s fzero). This can be done for one

reference test functions and the rest of the weights obtained by translation. The optimal value of

rwhm depends on the timescales of the dynamics and can be chosen from the data using the Fourier

transform as in the uniform grid case, however for simplicity we set rwhm = bM/100c in the large

noise examples below.

The adaptive grid Weak SINDy algorithm is summarized as follows:

ŵ = WSINDy AG
(
y, t ; (fj)j∈[J ], pw, Lw,K, rwhm, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′km = ∆tφ′k(tm),

with test functions (φk)k∈[K] determined by pw, Lw,K, rwhm as described above

2We find that a lower-degree test function with small support effectively locates steep gradients in noisy trajectories.
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3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that Gkj = 〈φk, fj(y)〉
and bkd = −〈φ′k,yd〉

4. Compute approximate covariance and Cholesky factorization Σ = V′(V′)T = CCT

5. Solve the generalized least squares problem with `2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.

2.3 Numerical Experiments

We now show that WSINDy is capable of recovering the correct dynamics to high accuracy

over a range of noise levels. We examine the systems in Table 2.1 which exhibit several canonical

dynamics, namely growth and decay, nonlinear oscillations and chaotic dynamics, in dimensions

D ∈ {2, 3, 5}. To generate true trajectory data we use MATLAB’s ode45 with absolute and relative

tolerance 10−10 and collect M samples uniformly3 in time with sampling rate ∆t. The parameters

M and ∆t are chosen to provide a balance between illustrating ODE behaviors and avoiding an

overabundance of observations. Gaussian white noise with mean zero and variance σ2 is added to

the exact trajectories, where σ is computed by specifying a noise ratio σNR and setting

σ = σNR
‖x‖F√
MD

(2.3.1)

where the Frobenius norm of a matrix x ∈ RM×D is defined by ‖x‖F :=
√∑M

m=1

∑D
d=1 |xmd|2.

The ratio of noise to signal is then approximately equal to the square root of the variance:

‖ε‖F / ‖x‖F ≈ σ.

We measure the accuracy in the recovered dynamical system using the relative ‖·‖F error in the

recovered coefficients,

E2(ŵ) =
‖ŵ −w?‖F
‖w?‖F

, (2.3.2)

and the relative ‖·‖F error between the noise-free data x and the data-driven dynamics xdd along

the same time points:

E2(xdd) =
‖xdd − x‖F
‖x‖F

. (2.3.3)

The collection of ODEs in Table 2.1 are all first-order autonomous systems, however they exhibit

a diverse range of dynamics. The Linear 5D system (for β < 0) and Duffing’s equation are both

examples of damped oscillators, showing that WSINDy is able to discern whether such motion

3We leave a detailed study of non-uniform time sampling to future work.
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Name Governing Equations M ∆t

Linear 5D


ẋ1 = −x5 − βx1 + x2,

ẋi = −xi−1 − βxi + xi+1, i = 2, 3, 4

ẋ5 = −x4 − βx5 + x1

1401 0.025

Duffing

{
ẋ1 = x2,

ẋ2 = −0.2x2 − 0.2x1 − βx3
1

3001 0.01

Van der Pol

{
ẋ1 = x2,

ẋ2 = βx2(1− x2
1)− x1

3001 0.01

Lotka-Volterra

{
ẋ1 = 3x1 − βx1x2,

ẋ2 = βx1x2 − 6x2
1001 0.01

Nonlinear Pendulum

{
ẋ1 = x2,

ẋ2 = − sin(x1)
501 0.1

Lorenz


ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 −
8

3
x3

10001 0.001

Table 2.1: ODEs used in numerical experiments. For Linear 5D, Duffing, Van der Pol and Lotka-
Volterra we measure the accuracy in the recovered system as the parameter β varies (see Table
2.2).

is governed by linear or nonlinear coupling between variables. For β > 0, the Linear 5D system

exhibits exponential growth. The Van der Pol oscillator, Lotka-Volterra system and nonlinear

pendulum demonstrate that a stable limit cycle with abrupt changes may manifest from vastly

different nonlinear mechanisms, which turn out to be identifiable using the weak form. Finally, the

Lorenz system exhibits deterministic chaos and hence the dynamics cover a wide range of Fourier

modes, which easily become corrupted with noise.

2.3.1 Noise-Free Data

The goal of the following noise-free experiments is to demonstrate convergence of the recovered

weights ŵ to the true weights w? to within the accuracy tolerance of the ODE solver (fixed 10−10

throughout). In light of Lemma 1, this should occur as the decay rate of the test functions (φk)k∈[K]

is increased, which for test functions in class S (see equation (2.2.6)) is realized by increasing the

polynomial degree p. Hence, over the range of parameter values in Table 2.2, for each system we

test convergence as p increases. We use the uniform grid approach with shift parameter s chosen

such that the number of test functions equals to the number of trial functions (K = J), resulting

in square Gram matrices G = VΘ(y). The support of the basis functions along the timegrid t is

set to L =
⌊
M
25

⌋
points. The data-driven trial basis (fj)j∈[J ] includes all monomials in the state

variables up to degree 5 as well as the trigonometric terms cos(nyd), sin(nyd) for n = 1, 2 and
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ODE β x(0) L ∆L J(= K)
Linear 5D (−0.3,−0.2,−0.1, 0.1} (10, 0, 0, 0, 0)T 57 5 252

Duffing (0.01, 0.1, 1, 10) (0, 2)T 121 99 29
Van der Pol (0.01, 0.1, 1, 10) (0, 1)T 121 99 29

Lotka-Volterra (0.005, 0.01, 0.1, 1) (1, 1)T 41 33 29
Pendulum — x2(0) = 0, x1(0) ∈ { 1516π,

10
16π,

5
16π,

1
16π} 21 16 29

Lorenz — ∼ U[−15,15]2×[10,40] 401 141 68

Table 2.2: Specifications for parameters used in illustrating simulations in Figure 2.2.

d ∈ [D]. We set the regularization parameter to zero (γ = 0), with the exception of the nonlinear

pendulum where γ = 10−8, and the sparsity threshold to λ = 0.001. We note that a non-zero γ is

always necessary to discover the nonlinear pendulum from combined trigonometric and polynomial

libraries since sin(x1) is well-approximated by polynomial terms, however the same is not true

for low-order polynomial systems. In cases considered here, sequential thresholding successfully

removes trigonometric library terms for ODE systems with polynomial dynamics despite initially

ill-conditioned Gram matrices G resulting from combining polynomial and trigonometric terms.

Figure 2.2 shows that in the limit of large p, WSINDy recovers the correct weight matrix w?

of each system in Table 2.1 to an accuracy of O(10−10). For the Linear 5D system, we vary

the growth/decay parameter, showing that the system is identifiable to high accuracy despite an

excessively large trial library (252 terms). For Duffing’s equation and the Van der Pol oscillator, the

same convergence trend is observed for β values spanning several orders of magnitude. Accuracy

is slightly worse for the Lotka-Volterra equation when β = 0.005, which corresponds to highly

infrequent predator-prey interactions and leads to solutions with large amplitudes and gradients.

For the nonlinear pendulum, we test that WSINDy is able to identify the sin(x1) nonlinearity for

both large and small initial amplitudes, noting that x1(0) = 15
16π ≈ π produces strongly nonlinear

oscillations, while x1(0) = 1
16π produces small-angle oscillations where sin(x1) ≈ x1. In addition,

for the pendulum we use fewer samples (M = 501) and a larger time step ∆t = 0.1, and hence

observe a decreased the convergence rate. For the Lorenz equations we vary the initial conditions,

generating 40 random initial conditions from a region covering the strange attractor, and show

convergence over all cases.

2.3.2 Small-Noise Regime

We now turn to the case of low to moderate noise levels, examining a noise ratio σNR in the

range [10−5, 0.04] for the Van der Pol oscillator and Duffing’s equation. We examine ρ ∈ [1, 7]

and s ∈ [0.3, 0.95] where ρ := ‖φ′k‖2 / ‖φk‖2 and s is the height of intersection of two neigh-

boring test functions φk and φk+1 (with s = 1 leading to φk = φk+1 and s = 0 indicating

supp(φk)∩supp(φk+1) = ∅). Using the analysis from Section 2.2.3, increasing ρ affects the dis-

tribution of the residual R(w) by magnifying the portion R3 = 〈φ′k, ε〉 that is linear in the noise.

For φ ∈ S, larger ρ corresponds to a higher polynomial degree p, with ρ ∈ [1, 7] leading to p ∈ [2, 98].
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(a) Linear 5D (b) Duffing

(c) Van der Pol. (d) Lotka-Volterra.

(e) Pendulum. (f) Lorenz.

Figure 2.2: Noise-free data (σNR = 0): plots of relative coefficient error E2(ŵ) (defined in (2.3.2))
vs. p. V1-V4 indicate different ODE parameters (see Table 2.2). For the Lorenz system the
parameters are fixed and 40 different initial conditions are sampled from a uniform distribution. In
each case, the recovered coefficients ŵ rapidly converge to within the accuracy of the ODE solver
(10−10).
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Figure 2.3: Small-noise regime: dynamic recovery of the Duffing equation with β = 1. Top: heat
map of the log10 average error E2(ŵ) (left) and sample standard deviation of E2(ŵ) (right) over
200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom: E2(ŵ) vs. ρ for fixed
s = 0.5 and various σNR. For ρ > 3 the average error is roughly an order of magnitude below σNR.

Larger shift parameter s corresponds to more test functions (higher K), but also to higher correla-

tion between rows in G, as 〈φk, fj(y)〉 ≈ 〈φk+1, fj(y)〉 when the supports of φk and φk+1 sufficiently

overlap. Here s ∈ [0.3, 0.95] corresponds to K ∈ [14, 451]. We again use the uniform grid approach

with γ = 0 and λ = 1
4 minw?

j 6=0 |w?
j |. For each system we generate 200 instantiations of noise and

record the coefficient error over the range of s and ρ values.

From Figures 2.3 and 2.4 we observe two properties. Firstly, the coefficient error E2(ŵ) mono-

tonically deceases with increasing s and ρ, hence accurate recovery requires sufficient overlap be-

tween test functions (large enough shift parameter s) and sufficiently localized test functions that

amplify the portion of the residual that is linear in the noise. Secondly, for large enough ρ and s,

the error in the coefficients scales linearly with σNR, leading to an accuracy of E2(ŵ) ≈ 0.1σNR,

or − log10(0.1σNR) significant digits in the recovered coefficients. In Appendix 2.A we show that

this second property does not hold for standard SINDy, in particular the method of differentiation

must change depending on the noise level in order to reach a desired accuracy.
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Figure 2.4: Small-noise regime: dynamic recovery of the Van der Pol oscillator with β = 4. Top:
heat map of the log10 average error E2(ŵ) (left) and sample standard deviation of E2(ŵ) (right)
over 200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom: E2(ŵ) vs. ρ for
fixed s = 0.5 and various σNR. Similar to the Duffing equation, average error falls to roughly an
order of magnitude below σNR, although for Van der Pol this regime is reached when ρ ≈ 6.
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Figure 2.5: Large-noise regime: Linear 5D Equation with damping β = −0.2. All correct terms were
identified with an error in the weights of E2(ŵ) = 0.0064 and a trajectory error of E2(ŵ) = 0.013.

2.3.3 Large-Noise Regime

Figures 2.5 to 2.10 show that adaptive placement of test functions (Strategy 2) can be employed

to discover dynamics in the large noise regime with fewer test functions. We test that each system

in Table 2.1 can be discovered under σNR = 0.1 (10% noise) from only 250 test functions distributed

near steep gradients in y, which are located using the scheme in Section 2.2.4 with pw = 2 and

Lw = 17. We set the width-at-half-max of the test functions to rwhm = bM/100c timepoints. To

exemplify the separation of scales and the severity of the corruption from noise, the noisy data y,

true data x and trajectories xdd from the learned dynamical systems are shown in dynamo view

and in phase space (for D ≤ 3). We extend xdd by 50% to show that the data-driven system

captures the true limiting behavior. We set the sparsity to λ = 1
4 minw? 6=0 |w?| and γ = 0 except

in the linear 5D and nonlinear pendulum examples, where γ =
√
σNR ≈ 0.32. For the trial basis

we use all monomials up to degree 5 in the state variables, and for the pendulum we include the

trigonometric terms sin(kyd), cos(kyd) for k = 1, 2 and d = 1, 2.

In each case the correct terms are identified with coefficient error E2(ŵ) < 10−2, in agreement

with the trend E2(ŵ) ≈ 0.1σNR observed in the small noise regime. For the Linear 5D, Duffing, and

Lotka-Volterra systems (Figures 2.5, 2.6, 2.8) the data-driven trajectory xdd is indistinguishable

from the true data to the eye, with trajectory error E2(ŵ) < 0.02. For the Van der Pol oscillator

and nonlinear pendulum (Figures 2.7 and 2.9), xdd follows a limit cycle with an attractor that

is indistiguishable from the true data (see phase plane plots) however an error in the period of

oscillation of roughly 0.6% leads to a larger trajectory error. The data-driven trajectory for the

Lorenz equation diverges from the true trajectory around t = 2.5 (Figure 2.10), which is expected

from chaotic dynamics, but still remains close to the Lorenz attractor.
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Figure 2.6: Large-noise regime: Duffing Equation, β = 1. All correct terms were identified with an
error in the weights of E2(ŵ) = 0.0075 and a trajectory error of E2(ŵ) = 0.014.



28

Figure 2.7: Large-noise regime: Van der Pol oscillator, β = 4. All correct terms were identified with
coefficient error E2(ŵ) = 0.0073 and trajectory error E2(ŵ) = 0.32. The data-driven trajectory
xdd has a slightly shorter oscillation period of 10.14 time units compared to the true 10.2, resulting
in an eventual offset from the true data x and hence a larger trajectory error. Measured over the
time interval [0, 8] the trajectory error is 0.065.
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Figure 2.8: Large-noise regime: Lotka-Volterra system with β = 1. All correct nonzero terms were
identified with an error in the weights of E2(ŵ) = 0.0013 and trajectory error E2(ŵ) = 0.0082.
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Figure 2.9: Large-noise regime: nonlinear pendulum with initial conditions x(0) = (15π/16, 0)T .
All correct nonzero terms were identified with an error in the weights of E2(ŵ) = 0.0089 and an
error between E2(ŵ) = 0.076.
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Figure 2.10: Large-noise regime: Lorenz system with x0 = (−8, 7, 27)T . All correct terms were
identified with an error in the weights of E2(ŵ) = 0.0084 and trajectory error E(ŵ) = 0.56. The
large trajectory error is expected due to the chaotic nature of the solution. Using data up until
t = 1.5 (first 1500 timepoints) the trajectory error is 0.027.
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2.4 Concluding Remarks

We have developed and investigated a data-driven model selection algorithm based on the weak

formulation of differential equations. The algorithm utilizes the reformulation of the model selection

problem as a sparse regression problem for the weights w? of a candidate function basis (fj)j∈[J ]

introduced in [140] and generalized in [23] as the SINDy algorithm. Our Weak SINDy algorithm

(WSINDy) can be seen as a generalization of the sparse recovery scheme using integral terms found

in [121], where dynamics were recovered from noisy data using the integral equation. We have

shown that by extending the integral equation to the weak form, and using test functions with

certain localization and smoothness properties, one may discovery the dynamics over a wide range

of noise levels, with accuracy scaling favorably with noise: E2(ŵ) ≈ 0.1σNR.

A natural line of inquiry is to consider how WSINDy compares with conventional SINDy. There

are several notable advantages of WSINDy; in particular, by considering the weak form of the

equations, WSINDy completely avoids approximation of pointwise derivatives which significantly

reduce the accuracy in conventional SINDy. When using SINDy, one must choose an appropriate

numerical differentiation scheme depending on the noise level (e.g. finite differences are not robust

to large noise but work well for small noise). For WSINDy, test functions from the space S (see

Section (2.2.4)) together with the trapezoidal rule are effective in both low noise and high noise

regimes. We demonstrate these observations in Appendix 2.A by comparing WSINDy to SINDy

under several numerical differentiation schemes. On the other hand, it may be the case that less

data is required by standard SINDy. For the examples show here, WSINDy works optimally for

test functions supported on at least 15 timepoints, while many derivative approximations require

fewer consecutive points.

WSINDy also utilizes the linearity of inner products with test functions to estimate the covari-

ance structure of the residual, performing model selection in a generalized least squares framework.

This is a much more appropriate setting given that residuals are neither independent nor uniformly

distributed, however we note that our implementations in this chapter employ approximate covari-

ance matrices and could benefit from further refinements and investigation. In Appendix 2.B we

show that using generalized least squares with approximate covariance improves some results over

ordinary least squares, but not significantly. We leave incorporation of more detailed knowledge

of the covariance structure to future work. In addition, generalized least squares could potentially

improve traditional model selection algorithms that rely on pointwise derivative estimates by sim-

ilarly exploiting linear operators. Ultimately, a thorough analysis of the advantages of generalized

least squares for model selection deserves further study.

Lastly, the most obvious extensions lie in generalizing the WSINDy method to spatiotempo-

ral datasets. WSINDy as presented here in the context of ODEs is an exciting proof of concept,

with natural extensions to spatiotemporal and multiresolution settings building upon the exten-

sive results in numerical and functional analysis for weak and variational formulations of physical
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problems.
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Appendix

2.A Comparison between WSINDy and SINDy

Here we compare WSINDy and SINDy using the Van der Pol oscillator, Lotka-Volterra sys-

tem and Lorenz equation. For WSINDy we place test functions along the time axis according to

the uniform grid strategy. For SINDy, we examine three differentiation methods: total-variation

regularized derivatives (SINDy-TV), centered 2nd-order finite difference (SINDy-FD-2), and cen-

tered 4th-order finite difference (SINDy-FD-4). For SINDy-TV we use default settings and set the

regularization parameter equal to the timestep.

For each system and noise level we generate 200 independent instantiations of noise and record

the average coefficient error E2(ŵ) (equation (2.3.2)) as well as the average True Positivity Ratio

(TPR) [80]

TPR(ŵ) =
TP(ŵ)

TP(ŵ) + FP(ŵ) + FN(ŵ)
, (2.A.1)

where TP(ŵ) is the number of correctly identified nonzero terms, FP(ŵ) is the number of falsely

identified nonzero terms, and FN(ŵ) is the number of terms that are falsely identified as having a

coefficient of zero. Since the feasible range of sparsity thresholds λ depends on the noise level, we

adopt the selection methodology in [99] to choose an appropriate λ value for each instantiation of

noise: λ is chosen from the set 10{−5+ i
10
,i∈{0,...,50}} (i.e. the 51 values from 10−5 to 1 equally spaced

log10) as the minimizer of the loss function

L(λ) =

∥∥Awλ −Aw0
∥∥

2

‖Aw0‖2
+

#{j : wλ
j 6= 0}
J

,

where A = VΘ(y) for WSINDy and A = Θ(y) for SINDy; wλ is the sequential-thresholding least-

squares solution for sparsity threshold λ and J is the number of terms in the model library (for

further details see [99]).

From Figures (2.A.2)-(2.A.3) we observe that for small noise (up to σNR = 10−1), the coeffi-

cient error for WSINDy follows the linear trend E2(ŵ) ≈ 0.1σNR (observed in the text) and that

SINDy-FD-4 behaves similarly but with slightly worse accuracy. For larger noise, SINDy diverges

in accuracy and identification of the correct nonzero terms for each differentiation scheme, while

WSINDy maintains a TPR of at least 0.8 up to 40% noise for each system. WSINDy thus pro-
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Figure 2.A.1: Comparison between WSINDy and SINDy: Van der Pol. Clockwise from top left:
small-noise TPR(ŵ) (defined in (2.A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (2.3.2)),
small-noise E2(ŵ).

vides an advantage across the entire noise spectrum examined, all while employing the same weak

discretization scheme.

2.B Generalized Least Squares vs. Ordinary Least Squares

Generalized least squares (GLS) aims to account for correlations between the residuals [70].

Given a linear model y = Xβ + ε where Cov(ε) = Σ and E[ε|X] = 0, the GLS estimator of the

parameters β upon observing ŷ is

β̂ =
(
XTΣ−1X

)−1
XTΣ−1ŷ.

This provides the best linear unbiased estimator of β in the sense that if β̃ is any other unbiased

estimator, then β̂ has lower variance: V[β̂i] ≤ V[β̃i], i = 1, . . . , n.

Above we derived an approximate covariance matrix Σ ≈ V′(V′)T to use in the GLS implemen-
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Figure 2.A.2: Comparison between WSINDy and SINDy: Lotka-Volterra. Clockwise from top left:
small-noise TPR(ŵ) (defined in (2.A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (2.3.2)),
small-noise E2(ŵ).
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Figure 2.A.3: Comparison between WSINDy and SINDy: Lorenz system. Clockwise from top left:
small-noise TPR(ŵ) (defined in (2.A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (2.3.2)),
small-noise E2(ŵ).
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Figure 2.B.1: Comparison between WSINDy with generalized least squares and WSINDy with
ordinary least squares using the Duffing equation. Results are averaged over 200 instantiations of
noise.

tation of WSINDy, although the true covariance depends on the underlying unknown dynamical

system and hence is unattainable. In addition, since in our case X = G = VΘ(y) depends on

the noise ε, the assumption E[ε|X] = 0 is violated. Nevertheless, we find that the noise regime

σNR ∈ [ 0.01, 0.3] does benefit from using GLS over LS. Figure 2.B.1 shows that for the Duffing

equation, GLS extends the region {σNR | TPR(ŵ) > 0.95} from σNR ≤ 0.05 to σNR ≤ 0.15, as well

as increases the accuracy in the recovered coefficients. This suggests that further improvements

can be made with a more refined covariance matrix.
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Chapter 3

WSINDy for PDEs

Abstract

Sparse Identification of Nonlinear Dynamics (SINDy) is a method of system discovery that has

been shown to successfully recover governing dynamical systems from data [23, 117]. Recently, sev-

eral groups have independently discovered that the weak formulation provides orders of magnitude

better robustness to noise. Here we extend our Weak SINDy (WSINDy) framework introduced in

[100] to the setting of partial differential equations (PDEs). The elimination of pointwise derivative

approximations via the weak form enables effective machine-precision recovery of model coeffi-

cients from noise-free data (i.e. below the tolerance of the simulation scheme) as well as robust

identification of PDEs in the large noise regime (with signal-to-noise ratio approaching one in

many well-known cases). This is accomplished by discretizing a convolutional weak form of the

PDE and exploiting separability of test functions for efficient model identification using the Fast

Fourier Transform. The resulting WSINDy algorithm for PDEs has a worst-case computational

complexity of O(ND+1 log(N)) for datasets with N points in each of D + 1 dimensions. Further-

more, our Fourier-based implementation reveals a connection between robustness to noise and the

spectra of test functions, which we utilize in an a priori selection algorithm for test functions. Fi-

nally, we introduce a learning algorithm for the threshold in sequential-thresholding least-squares

(STLS) that enables model identification from large libraries, and we utilize scale invariance at

the continuum level to identify PDEs from poorly-scaled datasets. We demonstrate WSINDy’s

robustness, speed and accuracy on several challenging PDEs. Code is publicly available on GitHub

at https://github.com/MathBioCU/WSINDy_PDE.

https://github.com/MathBioCU/WSINDy_PDE


41

3.1 Chapter Outline

The outline of the chapter is as follows. In Section 3.2 we define the system discovery problem

that we aim to solve and the notation to be used throughout. We then introduce the convolutional

weak formulation along with our FFT-based discretization in Section 3.3. Key ingredients of the

WSINDy algorithm for PDEs (Algorithm 3.4.2) are covered in Section 3.4, including a discussion

of spectral properties of test functions and robustness to noise (3.4.1), our modified sequential

thresholding scheme (3.4.2), and regularization using scale invariance of the underlying PDE (3.4.3).

Section 3.5 contains numerical model discovery results for a range of nonlinear PDEs, including

several vast improvements on existing results in the literature. We conclude the main text in Section

3.6 which summarizes the exposition and includes natural next directions for this line of research.

Lastly, additional numerical details are included in the Appendix.

3.2 Problem Statement and Notation

Let U be a spatiotemporal dataset given on the spatial grid X ⊂ Ω over timepoints t ⊂ [0, T ]

where Ω is an open, bounded subset in RD, D ≥ 1. In the cases we consider here, Ω is rectangular

and the spatial grid is given by a tensor product of one-dimensional grids X = X1 ⊗ · · · ⊗ XD,

where each Xd ∈ RNd for 1 ≤ d ≤ D has equal spacing ∆x, and the time grid t ∈ RND+1 has equal

spacing ∆t. The dataset U is then a (D+ 1)-dimensional array with dimensions N1 × · · · ×ND+1.

We write h(X, t) to denote the (D + 1)-dimensional array obtained by evaluating the function

h : RD ×R→ C at each of the points in the computational grid (X, t). Individual points in (X, t)

will often be denoted by (xk, tk) ∈ (X, t) where

(xk, tk) = (Xk1,...,kD , tkD+1
) = (xk1 , . . . , xkD , tkD+1

) ∈ RD × R.

In a mild abuse of notation, for a collection of points {(xk, tk)}k∈[K] ⊂ (X, t), the index k plays

a double role as a single index in the range [K] := {1, . . . ,K} referencing the point (xk, tk) ∈
{(xk, tk)}k∈[K] and as a multi-index on (xk, tk) = (Xk1,...,kD , tkD+1

), where kd references the dth

coordinate. This is particularly useful for defining a matrix G ∈ CK×J of the form

Gk,j = hj(xk, tk)

(as in equation (3.3.6) below) where (hj)j∈[J ] is a collection of J functions hj : RD ×R→ C evalu-

ated at the set of K points {(xk, tk)}k∈[K] ⊂ (X, t).

We assume that the data satisfies U = u(X, t) + ε for i.i.d. noise1 ε and weak solution u of the

1Here ε is used to denote a multi-dimensional array of i.i.d. random variables and has the same dimensions as U.
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PDE

Dα0
u(x, t) = Dα1

g1(u(x, t)) +Dα2
g2(u(x, t)) + · · ·+DαSgS(u(x, t)), x ∈ Ω, t ∈ (0, T ). (3.2.1)

The problem we aim to solve is the identification of functions (gs)s∈[S] and corresponding differ-

ential operators (Dαs)s∈[S] that govern the evolution2 of u according to Dα0
u given the dataset

U and computational grid (X, t). Here and throughout we use the multi-index notation αs =

(αs1, . . . , α
s
D, α

s
D+1) ∈ ND+1 to denote partial differentiation3 with respect to x = (x1, . . . , xD) and

t, so that

Dαsu(x, t) =
∂α

s
1+···+αsD+αsD+1

∂x
αs1
1 . . . ∂x

αsD
D ∂tα

s
D+1

u(x, t).

We emphasize that a wide variety of PDEs can be written in the form (3.2.1). In particular, in

this chapter we demonstrate our method of system identification on inviscid Burgers, Korteweg-

de Vries, Kuramoto-Sivashinsky, nonlinear Schrödinger’s, Sine-Gordon, a reaction-diffusion system

and Navier-Stokes. The list of admissable PDEs that can be transformed into a weak form without

any derivatives on the state variables includes many other well-known PDEs (Allen-Cahn, Cahn-

Hilliard, Boussinesq,. . . ).

3.3 Weak Formulation

To arrive at a computatonally tractable model recovery problem, we assume that the set of

multi-indices (αs)s∈[S] together with α0 enumerates the set of possible true differential operators

that govern the evolution of u and that (gs)s∈[S] ⊂ span(fj)j∈[J ] where the family of functions

(fj)j∈[J ] (referred to as the trial functions) is known beforehand. This enables us to rewrite (3.2.1)

as

Dα0
u =

S∑
s=1

J∑
j=1

w?
(s−1)J+jD

αsfj(u), (3.3.1)

so that discovery of the correct PDE is reduced to a finite-dimensional problem of recovering the

true vector of coefficients w? ∈ RSJ , which is assumed to be sparse.

To convert the PDE into its weak form, we multiply equation (3.3.1) by a smooth test function

ψ(x, t), compactly-supported in Ω× (0, T ), and integrate over the spacetime domain,

〈
ψ, Dα0

u
〉

=

S∑
s=1

J∑
j=1

w?
(s−1)J+j

〈
ψ, Dαsfj(u)

〉
,

where the L2-inner product is defined 〈ψ, f〉 :=
∫ T

0

∫
Ω ψ
∗(x, t)f(x, t) dxdt and ψ∗ denotes the com-

2Commonly Dα0

is a time derivative ∂t or ∂tt, although this is not required.
3We will avoid using subscript notation such as ux to denote partial derivatives, instead using Dαu or ∂xu. For

functions f(x) of one variable, f (n)(x) denotes the nth derivative of f .
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plex conjugate of ψ, although in what follows we integrate against only real-valued test functions

and will omit the complex conjugation. Using the compact support of ψ and Fubini’s theorem,

we then integrate by parts as many times as necessary to arrive at the following weak form of the

dynamics: 〈
(−1)|α

0|Dα0
ψ, u

〉
=

S∑
s=1

J∑
j=1

w?
(s−1)J+j

〈
(−1)|α

s|Dαsψ, fj(u)
〉
, (3.3.2)

where |αs| :=
∑D+1

d=1 α
s
d is the order of the multi-index4. Using an ensemble of test functions

(ψk)k∈[K], we then discretize the integrals in (3.3.2) with fj(u) replaced by fj(U) (i.e. evaluated

at the observed data U) to arrive at the linear system

b = Gw?

defined by  bk =
〈

(−1)|α
0|Dα0

ψk, U
〉
,

Gk,(s−1)J+j =
〈

(−1)|α
s|Dαsψk, fj(U)

〉
,

(3.3.3)

where b ∈ RK , G ∈ RK×SJ and w? ∈ RSJ are referred to throughout as the left-hand side, Gram

matrix and model coefficients, respectively. In a mild abuse of notation, we use the inner product

both in the sense of a continuous and exact integral in (3.3.2) and a numerical approximation in

(3.3.3) which depends on a chosen quadrature rule. Building off of its success in the ODE setting,

we use the trapezoidal rule throughout, as it has been shown to yield nearly negligible quadrature

error with the test functions employed below (see Section 3.4.1 and [100]). In this way, solving

b = Gw? for the model coefficients w? allows for recovery of the PDE (3.3.1) without pointwise

derivative approximations. The Gram matrix G ∈ RK×SJ and left-hand side b ∈ RK defined in

(3.3.3) conveniently take the same form regardless of the spatial dimension D, as their dimensions

only depend on the number of test functions K and the size SJ of the model library, composed of

J trial functions (fj)j∈[J ] and S candidate differential operators enumerated by the multi-index set

ααα := (αs)1≤s≤S .

3.3.1 Convolutional Weak Form and Discretization

We now restrict to the case of each test function ψk being a translation of a reference test

function ψ, i.e. ψk(x, t) = ψ(xk − x, tk − t) for some collection of points {(xk, tk)}k∈[K] ⊂ (X, t)

(referred to as the query points). The weak form of the dynamics (3.3.2) over the test function

4For example, with Dαs = ∂2+1

∂x2∂y
, integration by parts occurs twice with respect to the x-coordinate and once

with respect to y, so that |αs| = 3 and (−1)|α
s| = −1.
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basis (ψk)k∈[K] then takes the form of a convolution:

(
Dα0

ψ
)
∗ u(xk, tk) =

S∑
s=1

J∑
j=1

w?
(s−1)J+j

(
Dαsψ

)
∗ fj(u)(xk, tk). (3.3.4)

The sign factor (−1)|α
s| appearing in (3.3.2) after integrating by parts is eliminated in (3.3.4) due

to the sign convention in the integrand of the space-time convolution, which is defined by

ψ ∗ u(x, t) :=

∫ T

0

∫
Ω
ψ(x− y, t− s)u(y, s) dyds = 〈ψ(x− ·, t− ·), u(·, ·)〉 .

Construction of the linear system b = Gw? as a discretization of the convolutional weak form

(3.3.4) over the query points {(xk, tk)}k∈[K] can then be carried out efficiently using the FFT as

we describe below.

To relate the continuous and discrete convolutions, we assume that the support of ψ is contained

within some rectangular domain

ΩR := [−b1, b1]× · · · × [−bD, bD]× [−bD+1, bD+1] ⊂ RD × R

where bd = md∆x for d ∈ [D] and bD+1 = mD+1∆t. We then define a reference computational grid

(Y, t) ⊂ RD × R for ψ centered at the origin and having the same sampling rates (∆x,∆t) as the

data U, where Y = Y1 ⊗ · · · ⊗YD for Yd = (n∆x)−md≤n≤md and t = (n∆t)−mD+1≤n≤mD+1 . In

this way Y contains 2md + 1 points along each dimension d ∈ [D], with equal spacing ∆x, and t

contains 2mD+1 + 1 points with equal spacing ∆t. As with (X, t), points in (yk, tk) ∈ (Y, t) take

the form

(yk, tk) = (Yk1,...,kD , tkD+1
)

where each index kd for d ∈ [D + 1] takes values in the range {−md, . . . , 0, . . . ,md}, and for valid

indices k − j, the two grids (X, t) and (Y, t) are related by

(xk − xj , tk − tj) = (yk−j , tk−j). (3.3.5)

We stress that (Y, t) is completely defined by the integers m = (md)d∈[D+1], specified by the user,

and that the values of m have a significant impact on the algorithm. For this reason we develop an

automatic selection algorithm for m using spectral properties of the data U (see Appendix 3.A).

The linear system (3.3.3) can now be rewritten bk = Ψ0 ∗U(xk, tk),

Gk,(s−1)J+j = Ψs ∗ fj(U)(xk, tk),
(3.3.6)

where Ψs := Dαsψ(Y, t)∆xD∆t and the factor ∆xD∆t characterizes the trapezoidal rule. We
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define the discrete (D + 1)-dimensional convolution between Ψs and fj(U) at a point (xk, tk) =

(Xk1,...,kD , tkD+1
) ∈ (X, t) by

Ψs ∗ fj (U) (xk, tk) :=

N1∑
`1=1

· · ·
ND+1∑
`D+1=1

Ψs
k1−`1,...,kD+1−`D+1

fj
(
U`1,...,`D+1

)
,

which, substituting the definition of Ψs,

:=

N1∑
`1=1

· · ·
ND+1∑
`D+1=1

Dαsψ
(
Yk1−`1,...,kD−`D , tkD+1−`D+1

)
fj
(
U`1,...,`D+1

)
∆xD∆t (3.3.7)

truncating indices appropriately and using (3.3.5),

=

k1+m1∑
`1=k1−m1

· · ·
kD+1+mD+1∑

`D+1=kD+1−mD+1

Dαsψ
(
Yk1−`1,...,kD−`D , tkD+1−`D+1

)
fj
(
U`1,...,`D+1

)
∆xD∆t

(3.3.8)

=

k1+m1∑
`1=k1−m1

· · ·
kD+1+mD+1∑

`D+1=kD+1−mD+1

Dαsψ (xk − x`, tk − t`) fj
(
U`1,...,`D+1

)
∆xD∆t (3.3.9)

≈
∫ T

0

∫
Ω
Dαsψ(xk − x, tk − t)fj (u(x, t)) dx dt. (3.3.10)

3.3.2 FFT-based Implementation and Computational Complexity for Separable

ψ

Convolutions in the linear system (3.3.6) may be computed rapidly if the reference test function

ψ is separable over the given coordinates, i.e.

ψ(x, t) = φ1(x1) · · ·φ2(xD)φD+1(t)

for univariate functions (φd)d∈[D+1]. In this case,

Dαsψ(Y, t) = φ
(αs1)
1 (Y1)⊗ · · · ⊗ φ(αsD)

D (YD)⊗ φ(αsD+1)

D+1 (t),

so that only the vectors

φ
(αsd)

d (Yd) ∈ R2md+1, d ∈ [D] and φ
(αsD+1)

D+1 (t) ∈ R2mD+1+1,
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need to be computed for each 0 ≤ s ≤ S and the multi-dimensional arrays (Ψs)s=0,...,S are never

directly constructed. Convolutions can be carried out sequentially in each coordinate5, so that the

overall cost of computing each column Ψs ∗ fj (U) of G is

TI(N,n,D) := CN log(N)
D+1∑
d=1

ND+1−d (N − n+ 1)d−1 , (3.3.11)

if the computational grid (X, t) and reference grid (Y, t) have N and n ≤ N points along each of

the D + 1 dimensions, respectively. Here CN log(N) is the cost of computing the 1D convolution

between vectors vectors x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yN ) ∈ RN using the FFT,

x ∗ y = PF−1
(
F(x0)�F(y)

)
, (3.3.12)

where x0 = (0, . . . , 0, x1, . . . , xn) ∈ RN , � denotes element-wise multiplication and P projects onto

the first N − n+ 1 components. The discrete Fourier transform F is defined

Fk(y) =
N∑
j=1

yje
−2πi(j−1)(k−1)

with inverse

F−1
k (z) =

1

N

N∑
j=1

zje
2πi(j−1)(k−1).

The projection P ensures that the convolution only includes points that correspond to integrating

over test functions ψ that are compactly supported in (X, t), which is necessary for integration by

parts to hold in the weak form. The spectra of the test functions φ
(αsd)

d (Yd) can be precomputed

and in principle each convolution Ψs∗fj(U) can be carried out in parallel6, making the total cost of

the WSINDy Algorithm (3.4.2) in the PDE setting equal to (3.3.11) (ignoring the cost of the least-

squares solves which are negligible in comparison to computing (G,b)). In addition, subsampling

reduces the term (N −n+ 1) in (3.3.11) to (N −n+ 1)/s where s ≥ 1 is the subsampling rate such

that (N − n+ 1)/s points are kept along each dimension.

For most practical combinations of n and N , (say n > N/10 and N > 150) using the FFT

and separability provides a considerable reduction in computational cost. See Figure 3.3.1 for a

comparison between TI and the naive cost TII of an (N + 1)-dimensional convolution:

TII(N,n,D) := (2nD+1 − 1)(N − n+ 1)D+1. (3.3.13)

5The technique of exploiting separability in high-dimensional integration is not new (see [111] for an early intro-
duction) and is frequently utilized in scientific computing (see [9, 58] for examples in computational chemistry).

6For the examples in Section 3.5 the walltimes are reported for serial computation of (G,b).
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Figure 3.3.1: Reduction in computational cost of multi-dimensional convolution Ψs ∗ fj (U) when
Ψs and fj(U) have n and N points in each of D+ 1 dimensions, respectively. Each plot shows the
ratio TII/TI (equations (3.3.13) and (3.3.11)), i.e. the factor by which the separable FFT-based
convolution reduces the cost of the naive convolution, for D + 1 = 2 and D + 1 = 3 space-time
dimensions and n ∈ [N ]. The right-most plot shows that when N = 512 and D + 1 = 3, the
separable FFT-based convolution is 104 times faster for 100 ≤ n ≤ 450.

For example, with n = N/4 (a typical value) we have TII = O(N2D+2) and TI = O(ND+1 log(N)),

hence exploiting separability reduces the computational complexity by a factor of ND+1/ log(N).

3.4 WSINDy Algorithm for PDEs and Hyperparameter Selection

WSINDy for PDE discovery is given in Algorithm 3.4.2, where the user must specify each

of the hyperparameters in Table 3.4.1. The key pieces of the algorithm are (i) the choice of

reference test function ψ, (ii) the method of a sparsification, (iii) the method of regularization,

(iv) selection of convolution query points {(xk, tk)}k∈K , and (v) the model library. At first glance,

the number of hyperparameters is quite large. We now discuss several simplifications that either

reduce the number of hyperparameters or provide methods of choosing them automatically. In

Section 3.4.1 we discuss connections between the convolutional weak form and spectral properties

of ψ that determine the scheme’s robustness to noise and inform the selection of test function

hyperparameters. In Section 3.4.2 we introduce a modified sequential-thresholding least-squares

algorithm (MSTLS) which includes automatic selection of the threshold λ and allows for PDE

discovery from large libraries. In Section 3.4.3 we describe how scale invariance of the PDE is used

to rescale the data and coordinates in order to regularize the model recovery problem in the case

of poorly-scaled data. In Sections 3.4.4 and 3.4.5 we briefly discuss selection of query points and

an appropriate model library, however these components of the algorithm will be investigated more

thoroughly in future research.
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3.4.1 Selecting a Reference Test Function ψ

Convolutional Weak Form and Fourier Analysis

Computation of G and b in (3.3.6) with ψ separable requires the selection of appropriate 1D

coordinate test functions (φd)d∈[D+1]. Computing convolutions using the FFT (3.3.12) suggests a

mechanism for choosing appropriate test functions. Define the Fourier coefficients of a function

u ∈ L2([0, T ]) by

û(k) =
1√
T

∫ T

0
u(t)e−

2πik
T

t dt, k ∈ Z.

Consider data U = u(t) + ε ∈ RN for a T -periodic function u, tk = k TN = k∆t, and i.i.d. noise

ε ∼ N (0, σ2I). The discrete Fourier transform of the noise F(ε) := εR + iεI is then distributed

εR, εI ∼ N (0, (Nσ2/2)I). In addition, there exist constants C > 0 and ` > 1/2 such that |ûk| ≤
C|k|−` for each k ∈ Z. There then exists a noise-dominated region of the spectrum F(U) determined

by the noise-to-signal ratio

NSRk := E
[
|Fk(ε)|2

|Fk(u(t))|2

]
=

Nσ2

|Fk(u(t))|2
≈ Tσ2

N |û(k)|2
≥ 1

C2
∆tσ2k2`,

where ‘≈’ corresponds to omitting the aliasing error. For NSRk ≥ 1 the kth Fourier mode is by

definition noise-dominated, which corresponds to wavenumbers

|k| ≥ k∗ ≈
(

C

σ
√

∆t

)1/`

. (3.4.1)

If the critical wavenumber k∗ between the noise dominated (NSRk ≥ 1) and signal-dominated

(NSRk ≤ 1) modes can be estimated from the dataset U, then it is possible to design test functions

ψ such that the noise-dominated region of F(U) lies in the tail of ψ̂. The convolutional weak form

(3.3.6) can then be interpreted as an approximate low-pass filter on the noisy dataset, offering

robustness to noise without altering the frequency content of the data7.

In summary, spectral decay properties of the reference test function ψ serve to damp high-

frequency noise in the convolutional weak form, which acts together with the natural variance-

reducing effect of integration, as described in [57], to allow for quantification and control of the

scheme’s robustness to noise. Specifically, coordinate test functions φd with wide support in real

space (larger md) will reduce more variance, but will have a faster-decaying spectrum φ̂d, so that

signal -dominated modes may not be resolved, leading to model misidentification. On the other

hand, if φd decays too swiftly in real space (smaller md), then the spectrum φ̂d will decay more

slowly and may put too much weight on noise-dominated frequencies. In addition, smaller md

may not sufficiently reduce variance. A balance must be struck between (a) effectively reducing

7This is in contrast to explicit data-denoising, where a filter is applied to the dataset prior to system identification
and may fundamentally alter the underlying clean data. The implicit filtering of the convolutional weak form is made
explicit by the FFT-based implementation (3.3.12).
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variance, which is ultimately determined by the decay of ψ in physical space, and (b) resolving the

underlying dynamics, determined by the decay of ψ̂ in Fourier space.

Piecewise-Polynomial Test Functions

Many test functions achieve the necessary balance between decay in real space and decay in

Fourier space in order to offer both variance reduction and resolution of signal-dominated modes

(defined by (3.4.1)). For simplicity, in this chapter we use the same test function space used in

the ODE setting [100] and leave an investigation of the performance of different test functions to

future work. Define S to be the space of functions

φ(v) =

C(v − a)p(b− v)q a < v < b,

0 otherwise,
(3.4.2)

where p, q ≥ 1 and v is a variable in time or space. The normalization

C =
1

ppqq

(
p+ q

b− a

)p+q
ensures that ‖φ‖∞ = 1. Functions φ ∈ S are non-negative, unimodal, compactly-supported in [a, b],

and have bmin{p, q}c weak derivatives8. Larger p and q imply faster decay towards the endpoints

(a, b) and for p = q we refer to p as the degree of φ. See Figure 3.4.1 for a visualization of ψ

and partial derivatives Dαsψ constructed from tensor products of functions from S. In addition

to having nice integration properties combined with the trapezoidal rule (see Lemma 1 of [100]),

(a, b, p, q) can be chosen to localize φ̂ around signal-dominated frequencies in F(U) using the fact

that for any reference domain length L ≥ |b− a|,

|φ̂(k)| = o

((
|b− a|
L
|k|
)−bmin{p,q}c−1/2

)
.

To assemble the reference test function ψ from one-dimensional test functions (φd)d∈[D+1] ⊂ S
along each coordinate, we must determine the parameters (ad, bd, pd, qd) in the formula (3.4.2) for

each φd. For convenience we center (Y, t) at the origin so that each φd is supported on a centered

interval [ad, bd] = [−bd, bd], where bd = md∆x for d ∈ [D] and bD+1 = mD+1∆t, and set pd = qd

so that ψ is symmetric9. In this way only m := (md)d∈[D+1] and degrees p := (pd)d∈[D+1] need to

be specified, hence the vectors (φ
(αsd)

d (Yd))0≤s≤S can be computed from an analogous function φpd

8S can also be seen as a scaled subset of the Bernstein polynomials, which, among other considerations, are used
in the construction of B-Splines [41].

9Test function asymmetry may provide an advantage in some cases, for instance along the time axis, however we
do not investigate this here.
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Figure 3.4.1: Plots of reference test function ψ and partial derivatives Dαsψ used for identification
of the Kuramoto-Sivashinsky equation. The upper left plot shows ∂tψ, the bottom right shows
∂6
xψ. See Tables 3.5.1-3.5.3 for more details.

with support [−1, 1],

φpd(v) :=

(1− v2)pd , −1 < v < 1

0, otherwise,

using

φ
(αsd)

d (Yd) =
1

b
αsd
d

φ
(αsd)
pd

(
Yd

bd

)
=

1

(md∆)α
s
d
φ

(αsd)
pd

(nd) ,

where nd := {−1 + n
md

: n ∈ {0, . . . , 2md}} is an associated scaled grid and ∆ ∈ {∆x,∆t}.
The discrete support lengths m and degrees p determine the smoothness of ψ, as well as its

decay in real and in Fourier space, hence are critical to the method’s performance. The degrees p

can be chosen from m to ensure necessary smoothness and decay in real space using

pd = min

{
p ≥ αd + 1 : φp

(
1− 1

md

)
≤ τ

}
, (3.4.3)

where αd := max0≤s≤S(αsd) is the maximum derivative along the dth coordinate and τ is a chosen

(real-space) decay tolerance. By enforcing that φd decays to τ at the first interior gridpoint of

its support, (3.4.3) controls the integration error (specifically, τ ≤
(

2md−1
m2
d

)q
ensures O(∆xq+1)

integration error for noise-free data), while p ≥ αd+1 ensures that φd ∈ Cαd(R), which is necessary

to integrate by parts as many times as required by the multi-index set ααα. The steps for arriving at
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the test function values on the reference grid (φ
(αsd)

d (Yd))0≤s≤S are contained in Algorithm 3.4.1.

In the examples below, we set τ = 10−10 throughout10 and we use the method introduced

in Appendix 3.A to choose m, which involves estimating the critical wavenumber k∗ (defined in

(3.4.1)) between noise-dominated and signal-dominated modes of F(U). We also simplify things

by choosing a single test function for all spatial coordinates, φx = φ1 = φ2 = · · · = φD where φx

has degree px and support mx, and a (possibly different) test function φt = φD+1 for the time axis

with degree pt and support mt (recall that subscripts x and t are indices, not partial derivatives).

This convention is used in the following sections.

Algorithm 3.4.1 WSINDy Test Function Creation

(φ
(αsd)

d (Yd))0≤s≤S = get test fcns (md, τ ; Xd,α)

1: Nd = length(Xd)
2: ∆x = gridwidth(Xd)
3: if md >

Nd−1
2 or md ≤ 1 then

4: return (“ERROR: invalid support size md”)
5: BREAK
6: end if
7: Set αd = max0≤s≤S(αsd)

8: Solve pd = min
{
p ≥ αd + 1 : φp

(
1− 1

md

)
≤ τ

}
9: Initialize A = 0 ∈ R(S+1)×(2md+1)

10: Set nd := {−1 + n
md

: n ∈ {0, . . . , 2md}}
11: for s = 0 : S do
12: Compute analytical order-(αsd) derivatives As = φ

(αsd)
pd

(nd)

13: Set φ
(αsd)

d (Yd) = 1

(md∆x)
αs
d
As

14: end for

3.4.2 Sparsification

To enforce a sparse solution we present a modified sequential-thresholding least-squares algorithm

MSTLS(G,b; λ), defined in (3.4.6), which accounts for terms that are outside of the dominant

balance physics of the data, as determined by the left-hand side b, as well as terms with small

coefficients. We then utilize the loss function

L(λ) =

∥∥G(wλ −wLS)
∥∥

2

‖GwLS‖2
+

#{Iλ}
SJ

(3.4.4)

to select an optimal threshold λ̂, where wλ is the output of MSTLS(G,b; λ) defined in equation

(3.4.6), #{·} denotes cardinality, Iλ := {1 ≤ i ≤ SJ : wλ
i 6= 0} is the index set of non-zero

coefficients of wλ, wLS :=
(
GTG

)−1
GTb is the least squares solution, and SJ is the total number

of terms in the library (S differential operators and J functions of the data). The first term in

10WSINDy appears not to be particularly sensitive to τ , similar results were obtained for τ = 10−6, 10−10, 10−16.
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L penalize the distance between GwLS (the projection of b onto the range of G) and Gwλ (the

projection of b onto the columns of G restricted to Iλ), while the second term penalizes the number

of nonzero terms in the resulting model. The normalization simply enforces L(0) = L(∞) = 1.

The MSTLS(G,b; λ) iteration is as follows. For a given λ ≥ 0, define the set of lower bounds

Lλ and upper bound Uλ by
Lλi = λmax

{
1,
‖b‖
‖Gi‖

}
Uλi =

1

λ
min

{
1,
‖b‖
‖Gi‖

} , 1 ≤ i ≤ SJ. (3.4.5)

Then with w0 = wLS , define the iterates

MSTLS(G,b;λ )


I` = {1 ≤ i ≤ SJ : Lλi ≤ |w`

i | ≤ Uλi }

w`+1 = arg min
supp(w)⊂I`

‖Gw − b‖22 .
(3.4.6)

The constraint Lλi ≤ |w`
i | ≤ Uλi is clearly more restrictive than standard sequential thresholding,

but it enforces two desired qualities of the model: (i) that the coefficients wλ do not differ too

much from 1, since 1 is the coefficient of the “evolution” term Dα0
u (assumed known), and (ii)

that the ratio ‖wiGi‖2 / ‖b‖2 lies in [λ, λ−1], enforcing an empirical dominant balance rule (e.g.

λ = 0.01 allows terms in the model to be at most two orders of magnitude from Dα0
u). Using

previous results on the convergence of STLS [158], for MSTLS(G,b;λ) we employ the stopping

criteria I` \ I`+1 = ∅, which must occur for some ` ≤ SJ . The overall sparsification algorithm

MSTLS(G,b; L,λλλ) is

MSTLS(G,b; L,λλλ)


λ̂ = min

{
λ ∈ λλλ : L(λ) = min

λ∈λλλ
L(λ)

}
ŵ = MSTLS(G,b; λ̂),

(3.4.7)

where λλλ is a finite set of candidate thresholds11. The learned threshold λ̂ is the smallest minimizer

of L over the range λλλ and hence marks the boundary between identification and misidentification

of the minimum-cost model, such that {λ ∈ λλλ : λ < λ̂} results in overfitting. A similar learning

method for λ̂ combining STLS and Tikhonov regularization (or ridge regression) was developed

in [117]. We have found that our approach of combining MSTLS(G,b; L,λλλ) with rescaling, as

introduced in the next section, regularizes the sparse regression problem in the case of large model

libraries without adding hyperparameters12 and definitely deserves further study.

11Other methods of minimizing L can be used, however minimizers are not unique (there exists a set of minimizers

- see Figure 3.5.3). Our approach is efficient and returns the minimizer λ̂ which has the useful characterization of
defining the thresholds λ that result in overfitting.

12Tikhonov regularization involves solving ŵ = arg minw ‖Gw − b‖22 + γ2 ‖w‖22
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3.4.3 Regularization through Rescaling

Construction of the linear system b = Gw involves taking nonlinear transformations of the data

fj(U) and then integrating against Dαsψ, which oscillates for large |αs|. This can lead to a large

condition number κ(G) and prevent accurate inference of the true model coefficients w?, especially

when the underlying data is poorly scaled13. In particular, identification of polynomial terms such

as ∂x(u2) from a large library of polynomial terms is ill-conditioned for large (or small) amplitude

data. Naively rescaling the data can easily lead to unreliable inference of model coefficients, since

characteristic scales often effect the dynamics in nontrivial ways. For example, solution amplitude

determines the wavespeed in the inviscid Burgers and Korteweg-de Vries equations, hence the

solution and space-time coordinates must be rescaled in a principled manner in order to preserve

the dynamics. To overcome this problem we propose to rescale the data using scale invariance

of the PDE and choose scales that achieve a lower condition number, as described below. This

approach allows for reliable identification of the Burgers and KdV equations from highly-corrupted

large-amplitude data (U ∼ O(103), see Section 3.5.4).

First, we note that the true model is scale invariant in the following way. If u solves (3.3.1),

then for any scales γx, γt, γu > 0, the rescaled function

ũ(x̃, t̃) := γu u

(
x̃

γx
,
t̃

γt

)
:= γu u(x, t)

solves

D̃α0
ũ =

S∑
s=1

J∑
j=1

w̃(s−1)J+jD̃
αs f̃j(ũ)

where D̃αs denotes differentiation with respect to (x̃, t̃) = (γxx, γtt). For homogeneous functions fj

with power βj , we have f̃j(ũ) = fj(ũ) = γ
βj
u fj(u), otherwise f̃j(ũ) = fj

(
ũ
γu

)
= fj(u) (in which case

we set βj = 0). The linear system in the rescaled coordinates b̃ = G̃w̃ is constructed by discretizing

the convolutional weak form as before but with a reference test function ψ̃ on the rescaled grid Ω̃R.

We recover the coefficients14 ŵ at the original scales by setting ŵ = Mw̃, where M = diag (µµµ) is

the diagonal matrix with entries

µ(s−1)J+j := γ
−(βj−1)
u γ

∑D
d=1(αsd−α

0
d)

x γ
(αsD+1−α

0
D+1)

t . (3.4.8)

There is flexibility in choosing the scales γu, γx, γt, and a natural choice is to enforce that the

columns of G̃ are similar in norm. Motivated by this, we find that for polynomial and trigonometric

13A common remedy for this is to scale G to have columns of unit 2-norm, however this has no connection with
the underlying physics.

14Note that thresholding in equation (3.4.6) occurs on ŵ and the terms ‖b‖
‖Gi‖

in the bounds (3.4.5) become
‖b̃‖

µi‖G̃i‖ .
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libraries, the scales15

γu =

 ‖U‖2′∥∥∥Uβ
∥∥∥

2′

1/β

, γx =
1

mx∆x

((
px
αx
2

)
αx!

)1/αx

, γt =
1

mt∆t

((
pt
αt
2

)
αt!

)1/αt

(3.4.9)

are sufficient to regularize ill-conditioning due to poor scaling. Here αx and αt are the maximum

spatial and temporal derivatives appearing in the library and β = maxj βj is the highest monomial

power of the functions (fj)j∈[J ]. From (3.4.9) we get that∥∥∥Ũβ
∥∥∥

2′
= ‖U‖2′

and

max
s
‖Ψs‖1′ ≤ max

s

∥∥∥Dαsψ̃
∥∥∥
∞
|Ω̃R| ≤ |Ω̃R|,

hence, using Young’s inequality for convolutions,∥∥∥Ψs ∗ Ũβ
∥∥∥

2′
≤ ‖Ψs‖1′

∥∥∥Ũβ
∥∥∥

2′
≤
∣∣∣Ω̃R

∣∣∣ ‖U‖2′ .
This shows that with scales γu, γx, γt set according to (3.4.9), the columns of G̃ are close in norm

to the original dataset U. Similar scales γx, γt, γu can be chosen for different model libraries and

reference test functions, and a more refined analysis will lead to scales that achieve closer agreement

in norm. In the examples below we rescale the data and coordinates according to (3.4.9), which

results in a low condition number κ(G̃) (see Table 3.5.3). Throughout what follows, quantities

defined over scaled coordinates will be denoted by tildes.

3.4.4 Query Points and Subsampling

Placement of {(xk, tk)}k∈[K] determines which regions of the observed data will most influence

the recovered model16. In WSINDy for ODEs ([100]), an adaptive algorithm was designed for

placement of test functions near steep gradients along the trajectory. Improvements in this direction

in the PDE setting are a topic of active research, however, for simplicity in this chapter we uniformly

subsample {(xk, tk)}k∈[K] from (X, t) using subsampling frequencies s = (s1, . . . , sD+1) along each

coordinate, specified by the user. That is, along each one-dimensional grid Xd, bNd−2md
sd

c points

are selected with uniform spacing sd∆x for d ∈ [D] and sD+1∆t for d = D + 1. This results in a

(D+1)-dimensional coarse grid with dimensions bN1−2m1
s1

c×· · ·×bND+1−2mD+1

sD+1
c, which determines

the number of query points

K =

D+1∏
d=1

⌊
Nd − 2md

sd

⌋
. (3.4.10)

15Here ‖U‖2′ is the 2-norm of U stretched into a column vector (and similarly for ‖·‖1′).
16Note that the projection operation in (3.3.12) restricts the admissable set of query points to those for which

ψ(xk − x, tk − t) is compactly supported within Ω× [0, T ], which is necessary for integration by parts to be valid.
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Hyperparameter Domain Description

(fj)j∈[J ] C(R) trial function library

ααα = (αs)s=0,...,S N(S+1)×(D+1) partial derivative multi-indices

m = (md)d∈[D+1] ND+1 discrete support lengths of 1D test functions (φd)d∈[D+1]

s = (sd)d∈[D+1] ND+1 subsampling frequencies for query points {(xk, tk)}k∈[K]

λλλ [0,∞) search space for sparsity threshold λ̂

τ (0, 1] ψ real-space decay tolerance

Table 3.4.1: Hyperparameters for the WSINDy Algorithm 3.4.2. Note that fj piecewise continuous
is sufficient (we just need convergence of the trapezoidal rule), m may be replaced by a spectral-
decay tolerance τ̂ > 0 if test functions are automatically selected from the data using the method
in Appendix 3.A, and K is determined from m and s using (3.4.10).

3.4.5 Model Library

The model library is determined by the nonlinear functions (fj)j∈[J ] and the partial derivative

indices ααα and is crucial to the well-posedness of the recovery problem. In the examples below we

choose (fj)j∈[J ] to be polynomials and trigonometric functions as these sets are dense in many

relevant function spaces. When the true PDE does not contain cross derivatives (e.g. ∂2

∂x1∂x2
), we

remove them from the derivative library ααα and note that including these terms does not have a

significant impact on the results.

Algorithm 3.4.2 WSINDy for PDEs
(ŵ, λ̂) = WSINDy((fj)j∈[J ], α,m, s, λλλ, τ ; U, (X, t))

1: for d = 1 : D + 1 do
2: Compute (φ

(αsd)

d (Yd))0≤s≤S = get test fcns (md, τ ; Xd,α) using Algorithm 3.4.1
3: end for
4: Compute scales {γu, (γd)D+1

d=1 } and scale matrix M = diag(µµµ) using (3.4.9)
5: Subsample query points {(xk, tk)}k∈[K] ⊂ (X, t) using subsampling frequencies s =

(s1, s2, . . . , sD+1);
6: Compute left-hand side b̃ = Ψ̃0 ∗ Ũ over {(xk, tk)}k∈[K] using FFT and separability of ψ;
7: for j = 1 : J do
8: Compute f̃j(Ũ);
9: for s = 1 : S do

10: Compute column (s−1)J+j of Gram matrix G̃:,(s−1)J+j = Ψ̃s ∗ f̃j(Ũ) over {(xk, tk)}k∈[K]

using FFT and separability of ψ
11: end for
12: end for
13: (ŵ, λ̂) = MSTLS(G̃, b̃; L,λλλ)
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3.5 Examples

Inviscid Burgers (IB) ∂tu = −1
2∂x(u2)

Korteweg-de Vries (KdV) ∂tu = −1
2∂x(u2)− ∂xxxu

Kuramoto-Sivashinsky (KS) ∂tu = −1
2∂x(u2)− ∂xxu− ∂xxxxu

Nonlinear Schrödinger (NLS)

{
∂tu = 1

2∂xxv + u2v + v3

∂tv = −1
2∂xxu− uv

2 − u3

Anisotropic Porous Medium (PM) ∂tu = (0.3)∂xx(u2)− (0.8)∂xy(u
2) + ∂yy(u

2)

Sine-Gordon (SG) ∂ttu = ∂xxu+ ∂yyu− sin(u)

Reaction-Diffusion (RD)

{
∂tu = 1

10∂xxu+ 1
10∂yyu− uv

2 − u3 + v3 + u2v + u

∂tv = 1
10∂xxv + 1

10∂yyv + v − uv2 − u3 − v3 − u2v

2D Navier-Stokes (NS) ∂tω = −∂x(ωu)− ∂y(ωv) + 1
100∂xxω + 1

100∂yyω

Table 3.5.1: PDEs used in numerical experiments, written in the form identified by WSINDy.
Domain specification and boundary conditions are given in Appendix 3.B.

We now demonstrate the effectiveness of WSINDy by recovering the PDEs listed in Table 3.5.1

over a range of noise levels. These examples show that WSINDy provides orders of magnitude

improvements over derivative-based methods [117], with reliable and accurate recovery of four out

of the eight PDEs under noise levels as high as 100% (defined in (3.5.1) and (3.5.2)) and for

all examples under 20% noise. In contrast to the weak recovery methods in [114, 57], WSINDy

uses (i) the convolutional weak form (3.3.6) and FFT-based implementation (3.3.12), (ii) improved

thresholding and automatic selection of the sparsity threshold λ̂ via (3.4.6) and (3.4.7), and (iii)

rescaling using (3.4.9). The effects of these improvements are discussed in Sections 3.5.4 and 3.5.5.

To test robustness to noise, a noise ratio σNR is specified and a synthetic “observed” dataset

U = U? + ε

is obtained from a simulation U? of the true PDE17 by adding i.i.d. Gaussian noise with variance

σ2 to each data point, where

σ := σNR ‖U?‖RMS := σNR

 1

(N1 · · ·NDND+1)

N1∑
k1=1

· · ·
ND+1∑
kD+1=1

(
U?
k1,...,kD+1

)2

1/2

. (3.5.1)

We examine noise ratios σNR in the range [0, 1] and often refer to the noise level as σNR or

equivalently that the data contains 100σNR% noise. We note that the resulting true noise ratio

σ?NR :=
‖ε‖RMS

‖U?‖RMS

(3.5.2)

17Details on the numerical methods and boundary conditions used to simulate each PDE can be found in Appendix
3.B.
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matches the specified σNR to at least four significant digits in all cases and so we only list σNR.

When the state variable is vector-valued, as with the nonlinear Schrödinger, reaction-diffusion, and

Navier-Stokes equations (see Table 3.5.1), a separate noise variance σ2 is computed for each vector

component so that the noise ratio σNR of each component satisfies (3.5.2).

3.5.1 Performance Measures

To measure the ability of the algorithm to correctly identify the terms having nonzero coeffi-

cients, we use the true positivity ratio (introduced in [80]) defined by

TPR(ŵ) =
TP

TP + FN + FP
(3.5.3)

where TP is the number of correctly identified nonzero coefficients, FN is the number of coefficients

falsely identified as zero, and FP is the number of coefficients falsely identified as nonzero. Identi-

fication of the true model results in a TPR of 1, while identification of half of the correct nonzero

terms and no falsely identified nonzero terms results in TPR of 0.5 (e.g. the 2D Euler equations

∂tω = −∂x(ωu)−∂y(ωv) result in a TPR of 0.5 if the underlying true model is the 2D Navier-Stokes

vorticity equation). We will see that in several cases that the average TPR remains above 0.95

even as the noise level approaches 1. The loss function L(λ) (defined in (3.4.4)) and the resulting

learned sparsity threshold λ̂ (defined in (3.4.7)) provide additional information on the algorithm’s

ability to identify the correct model terms with respect to the noise level. In particular, sensitivity

to the sparsity threshold suggests that automatic selection of λ̂ is essential to successful recovery

in the relatively large noise regime.

To assess the accuracy of the recovered coefficients we use two metrics. We measure the maxi-

mum error in the true non-zero coefficients using

E∞(ŵ) := max
{j : w?

j 6=0}

|ŵj −w?
j |

|w?
j |

, (3.5.4)

where | · | denotes absolute value, and the `2 distance in parameter space using

E2(ŵ) :=
‖ŵ −w?‖RMS

‖w?‖RMS

. (3.5.5)

E∞ determines the number of significant digits in the recovered true coefficients while E2 provides

information about the magnitudes of coefficients that are falsely identified as nonzero. Often when

a term is falsely identified and the resulting nonzero coefficient is small, a larger sparsity factor will

result in idenfitication of the true model.

Finally, when TPR(ŵ) = 1, we report the prediction accuracy between the true data U? and a

numerical solution Udd to the data-driven PDE using the same initial conditions. We compute the
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relative L2 error Pt(ŵ) at time t = 0.5T (i.e. at the half-way point in time) defined by

Pt(ŵ) :=

∥∥Udd
t −U?

t

∥∥
RMS

‖U?
t ‖RMS

(3.5.6)

where Udd
t , U?

t denote the numerical solutions over the spatial domain at time t. Since solutions

to the data-driven dynamics and the true dynamics will eventually drift apart, we also measure

Ttol(ŵ) :=
1

T
inf{t ∈ [0, T ] : Pt(ŵ) > tol}, (3.5.7)

or, the first time t (relative to the final time T ) that the numerical solution Udd
t reaches a relative

L2 distance of tol from the truth. The minimum in (3.5.7) is computed over t ∈ t and we set

tol = 0.1. We provide results for P0.5T (ŵ) and T0.1(ŵ) averaged over the weights ŵ satisfying

TPR(ŵ) = 1.

For each system in Table 3.5.1 and each noise level σNR ∈ {0.025q : q ∈ {0, . . . , 40}} we run

WSINDy on 200 instantiations of noise18 and average the results of error statistics (3.5.3)-(3.5.7).

Computations were carried out on a University of Colorado Boulder Blanca Condo cluster19.

3.5.2 Implementation Details

The hyperparameters used in WSINDy applied to each of the PDEs in Table 3.5.1 are given

in Table 3.5.2. To select test function discrete support lengths we used a combination of the

changepoint method20 described in Appendix 3.A and manual tuning. Across all examples the

real-space decay tolerance for test functions is fixed at τ = 10−10.

In computing a sparse solution ŵ = MSTLS(G,b;L,λλλ) (see equation (3.4.7)), the search space

λλλ for the learned threshold λ̂ is fixed for all examples at:

λλλ =
{

10−4+j 4
49 : j ∈ {0, . . . , 49}

}
,

in other words λλλ contains 50 points with log10(λλλ) equally spaced from −4 to 0. This implies a

stopping criteria of 50SJ thresholding iterations21.

We fix the subsampling frequencies (sx, st) to (N1
50 ,

N2
50 ) for PDEs in one spatial dimension and

to (N1
25 ,

N3
25 ) for two spatial dimensions, where the dimensions (N1, N2, N3) depend on the dataset.

Additional information about the convolutional weak discretization is included in Table 3.5.3, such

as the dimensions and condition number of the rescaled Gram matrix G̃ (computed from a typical

18We find that 200 runs sufficiently reduces variance in the results.
192X Intel Xeon 5218 at 2.3 GHz with 22 MB cache, 16 cores per cpu, and 384 GB ram.
20For Burgers, KdV, and KS we set τ̂ = 3 (defined in Appendix 3.A.2) while for NLS, PM, SG, RD, and NS we

used τ̂ = 1. For KS and NLS we chose (mx,mt) values nearby that had better performance.
21In the examples shown here we observed an average of 5 thresholding iterations and a maximum of 14 in any given

inner MSTLS(G,b; λ) loop (i.e. for each λ ∈ λλλ as in equation (3.4.6)), hence in practice the full MSTLS(G,b; L,λλλ)
algorithm requires far fewer iterations than the theoretical maximum of #{λλλ}SJ .
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PDE U fj ααα (mx,mt) (sx, st)

IB 256× 256 (uj−1)j∈[7] ((`, 0))0≤`≤6 (60, 60) (5, 5)

KdV 400× 601 (uj−1)j∈[7] ((`, 0))0≤`≤6 (45, 80) (8, 12)

KS 256× 301 (uj−1)j∈[7] ((`, 0))0≤`≤6 (23, 22) (5, 6)

NLS 2× 256× 251 (uivj)0≤i+j≤6 ((`, 0))0≤`≤6 (19, 25) (5, 5)

PM 200× 200× 128 (ui−1)i∈[5] ((`1, `2, 0))0≤`1,`2≤4 (37, 20) (8, 5)

SG 129× 403× 205 (ui−1)i∈[5], (sin(ju), cos(ju))j=1,2 ((`, 0, 0), (0, `, 0))0≤`≤4 (40, 25) (5, 8)

RD 2× 256× 256× 201 (uivj)0≤i+j≤4 ((`, 0, 0), (0, `, 0))0≤`≤5 (13, 14) (13, 12)

NS 3× 324× 149× 201

{
(ωiujvk)0≤i+j+k≤2, |αs| = 0

(ωiujvk)0≤i+j+k≤3,i>0, |αs| > 0
((`, 0, 0), (0, `, 0))0≤`≤2 (31, 14) (12, 8)

Table 3.5.2: WSINDy hyperparameters used to identify each example PDE.

PDE G̃ κ(G̃) (px, pt) (γu, γx, γt) Walltime (sec)

IB 784× 43 1.4× 106 (7, 7) (4.5× 10−4, 0.0029, 1.1) 0.12

KdV 1443× 43 3.2× 106 (8, 7) (5.7× 10−4, 8.3, 1250) 0.39

KS 1806× 43 3.7× 103 (10, 10) (0.26, 0.74, 0.091) 0.24

NLS 1804× 190 1.2× 105 (11, 10) (0.33, 3.1, 9.4) 2.5

PM 4608× 65 2.4× 104 (8, 10) (1.6, 2.7, 3.2) 16

SG 13000× 73 1.3× 104 (8, 10) (0.23, 8.1, 8.1) 29

RD 11638× 181 4.5× 103 (13, 12) (0.86, 6.5, 1.4) 75

NS 3872× 50 8.2× 102 (9, 12) (0.53, 0.72, 2.4) 12

Table 3.5.3: Additional specifications resulting from the choices in Table 3.5.2. The last column
shows the start-to-finish walltime of Algorithm 3.4.2 with all computations in serial measured on a
laptop with an 8-core Intel i7-2670QM CPU with 2.2 GHz and 8 GB of RAM.

dataset with 20% noise), test function polynomial degrees (px, pt), scale factors (γu, γx, γt), and

start-to-finish walltime of Algorithm 3.4.2 with all computations performed serially on a laptop

with an 8-core Intel i7-2670QM CPU with 2.2 GHz and 8 GB of RAM.

3.5.3 Comments on Chosen Examples

The primary reason for choosing the examples in Table 3.5.1 is to demonstrate that WSINDy

can successfully recover models over a wide range of physical phenomena such as spatiotemporal

chaos, nonlinear waves, nonlinear diffusion, shock-forming solutions, complex limit cycles, and

pattern formation in reaction diffusion equations.

Recovery of the inviscid Burgers and anisotropic porous medium equations demonstrates (i)

that WSINDy can discover PDEs from solutions that can only be understood in a weak sense and

(ii) that discovery in this case is just as accurate and robust to noise and scaling as with smooth

data (i.e. no special modifications of the algorithm are required to discover models from non-smooth

data, as conjectured in [57]). We use analytical weak solutions, with inviscid Burgers data forming

a shock which propagates at constant speed (see Figure 3.5.1 for plots of the characteristic curves)

and porous medium data having a jump in the gradient ∇u. In addition, we discover the porous

medium equation using an anisotropic diffusivity tensor to demonstate that WSINDy can identify

the cross-diffusion term ∂xy(u
2) to high accuracy from a large candidate model library.
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Figure 3.5.1: Characteristics of the shock-forming solution (3.B.2) used to identify the inviscid
Burgers equation. A shock forms at time t = 2 and travels along the line x = 500(t− 2).

The inviscid Burgers and Korteweg-de Vries equations demonstrate that WSINDy successfully

recovers the correct models for nonlinear transport data with large amplitude. Both datasets

have mean amplitudes on the order of 103 (in addition KdV is given over a short time window of

t ∈ [0, 10−3]), and hence are not identifiable from large polynomial libraries using naive approaches.

The sparsification and rescaling measures in Sections 3.4.2 and 3.4.3 are essential to removing this

barrier.

The Sine-Gordon equation22 is used to show both that trigonometric library terms can easily

be identified alongside polynomials and that hyperbolic problems do not seem to present further

challenges. Discovery of the Sine-Gordon equation also appears to be particularly robust to noise,

which suggests that the added complexity of having multiple spatial dimensions is not in general a

barrier to identification.

For the nonlinear Schrödinger and reaction-diffusion systems, we test the ability of WSINDy to

select the correct monomial nonlinearities from an excessively large model library. Using a library

of 190 terms for nonlinear Schrödinger’s and 181 terms for reaction-diffusion (see the dimensions of

G̃ in Table 3.5.3), we demonstrate successful identification of the correct nonzero terms. Moreover,

for the reaction-diffusion system, misidentified terms directly reflect the existence of a limit cycle23.

Finally, the vortex-shedding limit cycle for the 2D Navier-Stokes equations is used primarily to

compare to previous results in [117], and we find that at large-noise WSINDy conveniently selects

the Euler equations.

22We have not included experiments involving multiple-soliton solutions to Sine-Gordon, however the success of
WSINDy applied to KdV, nonlinear Schrödinger and Sine-Gordon suggests that the class of integrable systems could
be a fruitful avenue for future research.

23We note that discovery of the same reaction-diffusion system from a much smaller library of terms is shown in
[117, 114], but with different initial conditions that result in a spiral wave limit cycle. Our choice of initial conditions
is motivated below in Appendix 3.B.



61

Figure 3.5.2: Left: average TPR (true positivity ratio, defined in (3.5.3)) for each of the PDEs
in Table 3.5.1 computed from 200 instantiations of noise for each noise level σNR. Right: average
learned threshold λ̂ (defined in (3.4.7)). For the porous medium equation (PM), λ̂ increases to 0.2
as σNR approaches 1 (we omit this from the plot in order to make visible the λ̂ trends for the other
systems).

3.5.4 Results: Model Identification

Performance regarding the identification of correct nonzero terms in each model is reported

in Figures 3.5.2 and 3.5.3, which include plots of the average TPR, the learned threshold λ̂, and

the loss function L(λ) (defined in (3.5.3), (3.4.7), and (3.4.4), respectively). As we will discuss,

significant decreases in average TPR are often accompanied by transitions in the identified λ̂.

Figure 3.5.2 (left) shows that for inviscid Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky

and Sine-Gordon, the average TPR stays above 0.95 even for noise levels as high as 100% (i.e.

WSINDy reliably identifies these models in the presence of noise that has the same L2-norm as

the underlying clean data). The average TPR for the nonlinear Schrödinger and porous medium

equations stays above 0.95 until 50% noise, after which identification of the correct monomial

nonlinearity is not as reliable. For NLS, this is a drastic improvement over previous studies [117],

especially considering the large library of 190 terms used.

We observe in Figure 3.5.2 (right) that the learned threshold λ̂ increases with σNR, suggesting

that automatic selection of λ̂ in the learning algorithm (3.4.7) is crucial to the algorithm’s robustness

to noise. For example, the Kuramoto-Sivashinsky equation has a minimum nonzero coefficient of

0.5 (multiplying ∂x(u2)), and we find that λ̂ approaches 0.1 as σNR approaches 1, which implies

that at higher noise levels the range of λ̂ values that is necessary24 for correct model identification is

approximately (∼ 0.1, ∼ 0.5). Since it is highly unlikely that this range of admissible values would

24By definition (3.4.7), λ̂ is the minimum value in λλλ that minimizes the loss L (3.4.7), hence values in λλλ below λ̂
are precisely the thresholds that result in misidentification of the correct model by overfitting, while thresholds above
min{j : w?j 6=0} |w?

j | necessarily underfit the model.



62

be known a priori, the chances of manually selecting a feasible λ̂ for Kuramoto-Sivashinsky are

prohibitively low in the large noise regime (see Figure 3.5.3a for visualizations of the loss L applied

to KS data). This effect is even greater for the porous medium equation. Automatic selection of λ̂

thus removes this sensitivity. In contrast, λ̂ is largely unaffected by increases in σNR for Burgers,

Korteweg-de Vries and Sine-Gordon. In particular, Figure 3.5.3b shows little qualitative changes

in the loss landscape for Sine-Gordon in the range 0.1 ≤ σNR ≤ 0.4.

Intriguingly, for reaction-diffusion, the average TPR falls below 0.95 at 22% noise, after which

WSINDy falsely identifies linear terms in u and v. If the true model is given by the compact form

∂tu = A(u) for u = (u, v)T , then the misidentified model in all trials for noise levels in the range

0.25 ≤ σNR ≤ 0.55 is given by

∂tu = βA(u) + α

(
0 1

−1 0

)
u (3.5.8)

for some α > 0 and β ≈ 1 dependent on σNR. This is explainable by the fact that the underlying

solution settles into a limit cycle, which means that at every point in space the solution oscillates.

Indeed, the falsely identified nonzero terms in (3.5.8) exactly convey that at each point in space the

solution is oscillating at a uniform frequency (albeit with variable amplitude and phase determined

by the initial conditions25). Hence, in the presence of certain lower-dimensional structures (in this

case a limit cycle), higher noise levels result in a mixture of the true model with a spatially-averaged

reduced model. This shift between detection of the correct model and the oscillatory version (3.5.8)

is also detectable in the learned threshold λ̂, which decreases at σNR = 0.22 (see RD data in Figure

3.5.2 (right)), and in the loss function L (Figure 3.5.3c). At σNR = 0.275 we see that L in Figure

3.5.3c is minimized for λ in the approximate range (∼ 0.02, ∼ 0.05) but also has a near-minimum

for λ ∈ (∼ 0.05, ∼ 0.1). These two regions correspond to discovery of the oscillatory model (3.5.8)

and the true model, respectively, but since the true model has a slightly higher loss at σNR = 0.275,

model (3.5.8) is selected. For σNR ≥ 0.4 there is no longer (on average) a region of λ that results

in discovery of the true model, and WINSDy returns (3.5.8) to compensate for noise.

For Navier-Stokes we see an averaging effect at higher noise, similar to the reaction-diffusion

system. TPR drops below 0.95 for noise levels above 27% with the resulting misidentified model

being simply Euler’s equations in vorticity form:

∂tω = −∂x(ωu)− ∂y(ωv).

This is due primarily to the small viscosity ν = 0.01 which prevents identification of the viscous

forces at higher noise levels. Examining the loss function L, Figure 3.5.3d shows that above σNR ≈
0.275, minimizers of L are above 0.01, hence the viscous terms will be thresholded out. Another

possible explanation is the low-accuracy simulation used for the clean dataset: in the noise-free

25This is discussed further in Appendix 3.B.7.
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(a) Kuramoto-Sivashinsky. (b) Sine-Gordon.

(c) Reaction-diffusion. (d) Navier-Stokes.

Figure 3.5.3: Plots of the average loss function L(λ) and resulting optimal threshold λ̂ for the
Kuramoto Sivashinsky, Sine-Gordon, Reaction diffusion and Navier-Stokes equations.

setting, Table 3.5.4 shows that WSINDy recovers the model coefficients of Navier-Stokes to less

than 3 significant digits in the absence of noise, which is the same level of accuracy exhibited on each

of the other systems under 5% noise (see Figure 3.5.4). Nevertheless, with reliable recovery up to

27% noise, WSINDy makes notable improvements on previous results ([117]). Moreover, recovery

of the Euler equations at high noise is desirable as this can be seen as the correct leader-order

model.

3.5.5 Results: Coefficient Accuracy

Accuracy in the recovered coefficients is measured by E∞ and E2 (defined in (3.5.4) and (3.5.5),

respectively) and shown in Table 3.5.4 for σNR = 0 and in Figure 3.5.4 for σNR > 0. As in

the ODE case, the coefficient error E∞ for smooth, noise-free data is determined by the order of
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IB KdV KS NLS PM SG RD NS

E∞ 4.3× 10−5 3.1× 10−7 8.1× 10−7 9.4× 10−8 2.2× 10−6 4.3× 10−5 3.9× 10−10 1.1× 10−3

Table 3.5.4: Accuracy of WSINDy applied to noise-free data (σNR = 0).

KdV KS NLS RD NS

WSINDy 6.7× 10−4 1.8× 10−4 2.9× 10−4 6.0× 10−4 1.2× 10−3

PDE-FIND 7.0× 10−2 0.52 3.0× 10−2 3.8× 10−2 7.0× 10−2

Table 3.5.5: Accuracy comparison between WSINDy and PDE-FIND with σNR = 0.01 (results for
PDE-FIND reproduced from [117]).

accuracy of the numerical simulation method26, since the error resulting from the trapezoidal rule

is of lower order for the values (px, pt) used in Table 3.5.3 (see [100], Lemma 1). Table 3.5.4 also

shows that the algorithm returns reasonable accuracy for non-smooth data, with E∞ = 4.3× 10−5

and E∞ = 2.2 × 10−6 for the inviscid Burgers and porous medium equations, respectively. For

reference, Table 3.5.5 shows that WSINDy improves over PDE-FIND by about two digits27.

For σNR > 0, in Figure 3.5.4 it is apparent that E∞ scales approximately as a power law

E∞ ∼ σrNR for some r approximately in the range (∼ 1, ∼ 2) in all systems except Navier-Stokes. It

was observed in [57] that E∞ will approximately scale linearly with σNR for Kuramoto-Sivashinsky,

however our results show that in general, for larger σNR, the rate will be superlinear and dependent

on the reference test function and the nonlinearities present. A simple explanation for this in the

case of normally-distributed noise is the following: linear terms Ψs ∗U will be normally-distributed

with mean Ψs∗U? and approximate variance ∆xD∆t
∥∥Dαsψ

∥∥2

2
σ2, hence are unbiased28 and lead to

perturbations that scale linearly with σNR. On the other hand, general monomial nonlinearities29

Ψs ∗ Uj with j > 1 are biased and have approximate variance ∆xD∆t
∥∥Dαsψ

∥∥2

2
p2j(σ) for p2j

a polynomial of degree 2j. Hence, nonlinear terms Ψs ∗ fj(U) lead to biased columns of the

Gram matrix G with variance scaling with σ2r for some r > 1 and proportional to
∥∥Dαsψ

∥∥
2
.

Thus, for larger noise and higher-degree monomial nonlinearities, we expect superlinear growth

of the error, as observed in particular with nonlinear Schrödinger’s, Sine-Gordon, and reaction-

diffusion. Nevertheless, Figure 3.5.4 suggests that a conservative estimate on the coefficient error

is E∞ ≤ σNR
10 , indicating 1− log10(σNR) significant digits (e.g. for σNR = 0.1 we have E∞ ≤ 10−2

for each system except KdV, indicating two significant digits), which is consistent with the ODE

case [100].

For Burgers and Korteweg-De Vries, the average error E2 at higher noise levels is affected by

outliers containing a falsely-identified advection term ∂xu. This is due to the large amplitude

26For example, Sine-Gordon and Navier-Stokes are both integrated in time using second-order methods, hence have
lower accuracy than the other examples (see Appendix 3.B for more details).

27Results shown for σNR = 0.01 reproduced from [117] (note that PDE-FIND is unreliable at higher noise levels).
28In other words, equal to the noise-free case in expectation (recall that U? is the underlying noise-free data).
29With the exception of j = 2 and odd |αs|, due to the fact that E[Ψs ∗ ε2] ≈ E[ε2]

∫
ΩR

Dαsψ dxdt = 0.
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Figure 3.5.4: Coefficient errors E∞ and E2 (equations (3.5.4) and (3.5.5)) for each of the seven
models Table 3.5.1. Models in one and two spatial dimensions are shown on the left and right,
respectively.

datasets used, which lead to the closest pure-advection model for each system being given by30

(Burgers) ∂tu = −(498)∂xu, (KdV) ∂tu = −(512)∂xu.

Hence, a falsely identified ∂xu term will have a large coefficient compared to the true model coeffi-

cients which have magnitudes 0.5 or 1. In all other cases, the values of E2 and E∞ are comparable,

which implies that misidentified terms do not have large coefficients and might be removed with a

larger threshold. Lastly, the sigmoidal shape of E∞ and E2 for Navier-Stokes is due again to the

unidentified diffusive terms at larger noise. It is interesting to note that for σNR ≤ 0.27 the coeffi-

cient error for Navier-Stokes is relatively constant, in contrast to the other systems, and does not

exhibit a power-law. However, at present, we do not have a concrete explanation for this behavior.

30This is found by projecting the left-hand side b onto the column ∂xψ ∗U? (i.e. in the noise-free case).
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Figure 3.5.5: Prediction accuracy measured by P0.5T (ŵ) and T0.1(ŵ) (defined in (3.5.6) and (3.5.7),
respectively).

3.5.6 Results: Prediction Accuracy

Lastly, Figure 3.5.5 shows the prediction accuracy on a subset of the systems in Table 3.5.1 as

measured by P0.5T (ŵ) and T0.1(ŵ) (defined in (3.5.6) and (3.5.7), respectively). We report that

data-driven solutions attain greater than 90% accuracy in the L2 sense up to time 0.8T (80% of

the trajectory) for noise levels as high as 40%. (This excludes the KS equation, which exhibits

spatiotemporal chaos and cannot be expected to remain close to the noise-free data.) Data-driven

solutions to the KS equation, while eventually divergent, also attain 90% accuracy up to time 0.5T

for noise levels below 15%. Lastly, we note that for lower noise levels (up to 10%), the accuracy of

data-driven solutions to the inviscid Burgers, Korteweg-de Vries and Sine-Gordon equations is on

average above 96% along the entire trajectory (not shown in the figures).

3.6 Conclusion

We have extended the WSINDy algorithm to the setting of PDEs for the purpose of discovering

models for spatiotemporal dynamics without relying on pointwise derivative approximations, black-

box closure models (e.g. deep neural networks), dimensionality reduction, or other noise filtering.

We have provided methods for learning many of the algorithm’s hyperparameters directly from

the given dataset, and in the case of the threshold λ̂, demonstrated the necessity of avoiding

manual hyperparameter tuning. The underlying convolutional weak form (3.3.4) allows for efficient

implementation using the FFT. This naturally leads to a selection criterion for admissable test

functions based on spectral decay, which is implemented in the examples above. In addition, we

have shown that by utilizing scale invariance of the PDE together with a modified sparsification

measure, models may be recovered from large candidate model libraries and from data that is poorly
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scaled. When unsuccessful, WSINDy appears to discover a nearby sparse model that captures

the dominant spatiotemporal behavior (see the discussions surrounding misidentification of the

reaction-diffusion and Navier-Stokes equations in Section 3.5.4).

We close with a summary of possible future directions. In Section 3.4.1 we discussed the

significance of decay properties of test functions in real and in Fourier space, as well as general test

function regularity. We do not make any claim that the class S defined by (3.4.2) is optimal, but

it does appear to work very well, as demonstrated above (as well as in the ODE setting [100]) and

also observed in [114, 57]. A valuable tool for future development of weak identification schemes

would be the identification of optimal test functions. A preliminary step in this direction is our use

of the changepoint method described in Appendix 3.A.

In the ODE setting, adaptive placement of test functions provided increased robustness to noise.

Convolution query points can similary be strategically placed near regions of the dynamics with

high information content, which may be crucial for model selection in higher dimensions. Defining

regions of high information content and adaptively placing query points accordingly would allow for

identification from smaller datasets.

Ordinary least squares makes the assumption of i.i.d. residuals and should be replaced with

generalized least squares to accurately reflect the true error structure. The current framework could

be vastly improved by incorporating more precise statistical information about the linear system

(G,b). The first step in this direction is the derivation of an approximate covariance matrix as in

WSINDy for ODEs [100]. Previous results on generalized sensitivity analysis for PDEs may provide

improvements in this direction [73, 134].

Accuracy in the recovered coefficients is still not entirely understood and is needed to derive

recovery guarantees. It is claimed in [57] that at higher noise levels the scaling will approximately

be linear in σNR, while we have demonstrated that this is not the case in general: the scaling

depends on the nonlinearities present in the true model, the decay properties of the test functions,

and accuracy of the underlying clean data. Analysis of coefficient error dependence (on noise,

amplitudes, number of datapoints, etc.) could occur in tandem with development of a generalized

least-squares framework.

The examples above show that WSINDy is very robust to noise for problems involving nonlinear

waves (Burgers, Korteweg de-Vries, nonlinear Schrödinger, Sine-Gordon), spatiotemporal chaos

(Kuramoto-Sivashinsky), and even nonlinear diffusion (porous medium), but is less robust for data

with limit cycles (reaction-diffusion, Navier-Stokes). Further, identification of Burgers, Korteweg

de-Vries, and Sine-Gordon appears robust to changes in the sparsity threshold λ̂ (see Figure 3.5.2

(right)). A structural identifiability criteria for measuring uncertainty in the recovery process based

on identified structures (transport processes, mixing, spreading, limit cycles, etc.) would also be

invaluable for general model selection.
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Appendix

3.A Learning Test Functions From Data

We present the following algorithm for automatic selection of test functions which utilizes the

implicit smoothing of high-frequency noise afforded by the convolution. This approach is useful

in practice but we leave rigorous justification of it to future work. We proceed in two steps: (1)

estimation of critical wavenumbers (k∗1, . . . , k
∗
D+1) separating noise- and signal-dominated modes in

each coordinate and (2) enforcing decay in real and in Fourier space.

We will describe the process for detecting k∗x = k∗1 from data U ∈ RN1×N2 given over the

one-dimensional spatial grid x ∈ RN1 at timepoints t ∈ RN2 . Figures 3.A.1-3.A.2 illustrate this

approach using Kuramoto-Sivashinsky data with 50% noise. Below, Fx and F t denote the discete

Fourier transform (DFT) along the x and t coordinates, respectively, while F denotes the full

two-dimensional DFT.

3.A.1 Detection of Critical Wavenumbers

Assume the data has additive white noise U = U? + ε with ε ∼ N (0, σ2) and that F(U?)

decays. The power spectrum of the noise |Fx(ε)| is then i.i.d, hence as discussed in Section 3.4.1,

there will be a critical wavenumber k∗x in the power spectrum of the data Fx(U) after which the

modes become noise-dominated. To detect k∗x, we collapse |Fx(U)| into a one-dimensional array

by averaging in time and then take the cumulative sum in x:

Hx
k :=

k∑
j=−N1/2

|Fxj (U)| (3.A.1)

where |Fxj (U)| is the time-average of the jth mode of the discrete Fourier transform along the x-

coordinate. Since |Fx(ε)| is i.i.d., Hx will be approximately linear over the noise-dominated modes,

which is an optimal setting for locating k∗x as a changepoint, or in other words the corner point of

the best piecewise-linear approximation31 to Hx using two pieces (see Figure 3.A.1). An algorithm

for this is given in [76] and implemented in MATLAB using the function findchangepts.

31In the weighted least-squares sense with weights ωk = |Hx
k|−1.
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3.A.2 Enforcing Decay

Having detected the changepoints k∗x and k∗t , we compute hyperparameters for the coordinate

test functions φx and φt using user-specified hyperparameters τ and τ̂ . As in Section 3.4.1, τ

specifies the rate of decay of φx and φt in real space through equation (3.4.3). The hyperparameter

τ̂ is introduced to specify the rate of decay of φx and φt in Fourier space. Specifically, for a chosen

τ̂ we enforce that the changepoints k∗x and k∗t fall approximately τ̂ standard deviations into the tail

of the spectra φ̂x and φ̂t. This is done by utilizing that φx and φt are functions of the form

φa,p(s) := C

(
1−

(s
a

)2
)p

+

,

(i.e. centered, symmetric functions in the class S defined in (3.4.2)) which are well-approximated by

Gaussians for large enough p and appropriate scaling C. Indeed, letting C be such that ‖φa,p‖1 = 1

and setting σ := a/
√

2p+ 3, we have that φa,p matches the first three moments of the Gaussian

ρσ(s) :=
1√

2πσ2
e−s

2/2σ2
,

which provides a bound on the error in the Fourier transforms φ̂a,p and ρ̂σ for small frequencies ξ

in terms of their 4th moments32:

|φ̂a,p(ξ)− ρ̂σ(ξ)| ≤ |ξ|4
(
a4

2

[
p+ 3/2

(4p2 + 12p+ 9)(4p2 + 16p+ 15)

]
+ o(1)

)
= O(|ξ|4a4p−3).

This implies that for small ξ and a and large p, it suffices to use ρ̂σ(ξ) = ρ1/σ(ξ) to estimate φ̂a,p.

Hence, we enforce decay of φ̂x (and similarly for φ̂t) by choosing mx and px such that

2π

N1∆x
k∗x =

τ̂

σ
= τ̂

√
2px + 3

mx∆x

=⇒ 2πk∗xmx = τ̂N1

√
2px + 3. (3.A.2)

so that k∗x is τ̂ standard deviations into the tail of ρ̂σ(ξ), where σ = mx∆x/
√

2px + 3. To solve

(3.4.3) and (3.A.2) simultaneously, we compute mx as a root of

F (m) := F (m; kx, N1, τ̂ , τ) := log

(
2m− 1

m2

)(
4π2k∗x

2m2 − 3N2
1 τ̂

2
)
− 2N2

1 τ̂
2 log(τ).

F (m) has a unique root mx ≥ 2 in the nonempty interval[√
3

π

(
N1/2

k∗x

)
τ̂ ,

√
3

π

(
N1/2

k∗x

)
τ̂

√
1− (8/

√
3) log(τ)

]
32This also shows that with σ = a/

√
2p+ 3, if we take a =

√
2p then we get pointwise convergence φa,p → ρ1 as

p→∞.
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Figure 3.A.1: Visualization of the changepoint algorithm for KS data with 50% noise. Left: Hx

(defined in (3.A.1)) and best two-piece approximation Lk
∗
x along with resulting changepoint k∗x = 24.

The noise-dominated region of Hx (k > 24) is approximately linear as expected from the i.i.d.
noise. (The time-averaged power spectrum |Fx(U)| is overlaid and magnified for scale). Right:
resulting test function φx and power spectrum |F(φx)| along with reference Gaussian ρσ with
σ = mx∆x/

√
2px + 3. The power spectra |F(φx)| and |F(ρσ)| are in agreement over the signal-

dominated modes (k ≤ 24). (Note that the power spectrum is symmetric about zero.)

on which F monotonically decreases and changes sign, provided N1 > 4, τ ∈ (0, 1) and
√

3
π

τ̂
k∗x
∈

[4/N1, 1], constraints which are easily satisfied. After finding mx we can solve for px using either

(3.4.3) or (3.A.2).

Figure 3.A.2 illustrates the implicit filtering of this process using the Burgers-type nonlinearity

∂x(U2) and the same KS dataset as in Figure 3.A.2 with 50% noise. The top panel compares

a one-dimensional slice in x taken at fixed time t = 99 of the clean data (U?)2 and noisy data

(U)2. The middle panel shows the Fourier transforms of (U?)2 and (U)2 along the given slice,

showing that modes after k∗x become noise-dominated. Finally, the bottom panel shows that after

convolution with ∂̂xψ, where mx and kx are chosen with τ = 10−10 and τ̂ = 2, the clean and

noisy spectra agree well, indicating successful filtering of noise-dominated modes (note that (U)2

is highly-corrupted, nonlinearly-transformed, and biased from the noise-free term (U?)2, making

this agreement in spectrum nontrivial).

3.B Simulation Methods

We now review the numerical methods used to simulate noise-free datasets for each of the

PDEs in Table 3.5.1 (note that dimensions of the datasets are given in Table 3.5.2). Resolutions

in space and time were chosen to limit computational overhead while exemplifying the dominant

features of the solution. With the exception of the Navier-Stokes equations, which was simulated

using the immersed boundary projection method in C++ [133], all computations were performed
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Figure 3.A.2: Illustration of the test function learning algorithm using computation of
∂xψ ∗ (U2) along a slice in x at fixed time t = 99 for the same dataset used in Figure 3.A.1.
From top to bottom: (i) clean U? and noisy U variables, (ii) power spectra of the clean vs.
noisy data along with the learned corner point k∗x, (iii) power spectra of the element-wise products
F(∂xψ) � F((U?)2) and F(∂xψ) � F((U)2) (recall that these computations are embedded in the
FFT-based convolution (3.3.12)).
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in MATLAB 2019b. An interesting extension for future work would be to examine the dependence

of WSINDy on the resolution, similar to the work in [106].

3.B.1 Inviscid Burgers

∂tu = −1

2
∂x(u2) (3.B.1)

We take for exact data the shock-forming solution

u(x, t) =



A, t ≥ max

{
1

A
x+

1

α
,

2

A
x+

1

α

}
− αx

1− αt
, A

(
t− 1

α

)
< x ≤ 0

0, otherwise

. (3.B.2)

which becomes discontinuous at t = α−1 with a shock travelling along x = A
2

(
t− 1

α

)
(see Figure

3.5.1). We choose α = 0.5 and an extreme value of A = 1000 to demonstrate that WSINDy still has

excellent performance for large amplitude data. The noise-free data consists of (3.B.2) evaluated

at the points (xi, tj) = (−4000 + i∆x, j∆t) with ∆x = 31.25 and ∆t = 0.0157 for 1 ≤ i, j ≤ 256.

3.B.2 Korteweg-de Vries

∂tu = −1

2
∂x(u2)− ∂xxxu (3.B.3)

A solution is obtained for (x, t) ∈ [−π, π] × [0, 0.006] with periodic boundary conditions using

ETDRK4 timestepping and Fourier-spectral differentiation [72] with N1 = 400 points in space and

N2 = 2400 points in time. We subsample 25% of the timepoints for system identification and keep

all of the spatial points for a final resolution of ∆x = 0.0157, ∆t = 10−5. For initial conditions we

use the two-soliton solution

u(x, 0) = 3A2sech(0.5(A(x+ 2)))2 + 3B2sech(0.5(B(x+ 1)))2, A = 25, B = 16.

3.B.3 Kuramoto-Sivashinsky

∂tu = −1

2
∂x(u2)− ∂xxu− ∂xxxxu. (3.B.4)

A solution is obtained for (x, t) ∈ [0, 32π] × [0, 150] with periodic boundary conditions using ET-

DRK4 timestepping and Fourier-spectral differentiation [72] with N1 = 256 points in space and

N2 = 1500 points in time. For system identification we subsample 20% of the time points for a
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final resolution of ∆x = 0.393 and ∆t = 0.5. For initial conditions we use

u(x, 0) = cos(x/16)(1 + sin(x/16)).

3.B.4 Nonlinear Schrödinger

wt = − i
2
∂xxw + |w|2w (3.B.5)

For the nonlinear Schrödinger equation (NLS) we reuse the same dataset from [117], containing

N1 = 512 points in space and N2 = 502 timepoints, although we subsample 50% of the spatial

points and 50% of the time points for a final resolution of ∆x = 0.039, ∆t = 0.0125. For system

identification, we break the data into real and imaginary parts (w = u+ iv) and recover the system∂tu = 1
2∂xxv + u2v + v3

∂tv = −1
2∂xxu− uv

2 − u3.
(3.B.6)

3.B.5 Anisotropic Porous Medium

∂tu = (0.3)∂xx(u2)− (0.8)∂xy(u
2) + ∂yy(u

2). (3.B.7)

The equation can be rewritten

∂tu = ∇ ·
(
D∇(u2)

)
for diffusivity tensor

D =

(
0.3 −0.4

−0.4 1

)
.

For noise-free data we use the analytical weak solution

u(x, t) =
1√
t

max

(
C − xTD−1x

16
√
t

, 0

)

where x = (x, y)T and C =
(

8π
√

det (D)
)−1/2

is chosen to enforce that
∫
R2 u(x, t) dx = 1 for all

time. The solution has a finite jump in the gradient∇u. For reference, this is the anisotropic version

of the classical Barenblatt-Pattle solution to the (isotropic) porous medium equation [7, 110]. For

the computation grid we use 200 points equally spaced from −5 to 5 in both x and y and 128

timepoints equally spaced from 0.5 to 2.5. The resolution is then ∆x = 0.05 and ∆t = 0.0157.
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Figure 3.B.1: Noise-free data used for the anisotropic porous medium equation (3.B.7) at the initial
time t = 0.5 (left) and final time t = 2.5 (right).

3.B.6 Sine-Gordon

∂ttu = ∂xxu+ ∂yyu− sin(u) (3.B.8)

A numerical solution is obtained using a pseudospectral method on the spatial domain [−π, π] ×
[−1, 1] with 64 equally-spaced points in x and 64 Legendre nodes in y. Periodic boundary conditions

are enforced in x and homogeneous Dirichlet boundaries in y. Geometrically, waves can be thought

of as propagating on a right cylindrical sheet with clamped ends. Leapfrog time-stepping is used

to generate the solution until T = 5 with ∆t = 6e−5. We then subsample 0.25% of the timepoints

and interpolate onto a uniform grid in space with N1 = 403 points in x and N2 = 129 points in y.

The final resolution is ∆x = 0.0156, ∆t = 0.025. We arbitrarily use Gaussian data for the initial

wave disturbance:

u(x, y, 0) = 2π exp(−8(x− 0.5)2 − 8y2).

It is worth noting that when STLS is used instead of MSTLS (see Section 3.4.2) for sparsity

enforcement, WSINDy returns a combination of sin(u) and terms from Taylor expansion of sin(u),

α

(
u− 1

6
u3 + · · ·

)
+ (1− α) sin(u). (3.B.9)

MSTLS removes this problem. Furthermore, the test function selection method in Appendix 3.A is

essential for allowing robust recovery of the Sine-Gordon equation as σNR → 1 (see Figure 3.5.2).
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3.B.7 Reaction-Diffusion

∂tu = 1
10∂xxu+ 1

10∂yyu− uv
2 − u3 + v3 + u2v + u

∂tv = 1
10∂xxv + 1

10∂yyv + v − uv2 − u3 − v3 − u2v
(3.B.10)

The system (3.B.10) is simulated over a doubly-periodic domain (x, y) ∈ [−10, 10] × [−10, 10]

with t ∈ [0, 10] using Fourier-spectral differentiation in space and method-of-lines time integration

via MATLAB’s ode45 with default tolerance. The computational domain has dimensions N1 =

N2 = 256 and N3 = 201, for a final resolution of ∆x = 0.078, ∆t = 0.0498. For initial conditions

we use the spiral datau(x, y, 0) = tanh(
√
x2 + y2) cos

(
θ(x+ iy)− π

√
x2 + y2

)
v(x, y, 0) = tanh(

√
x2 + y2) sin

(
θ(x+ iy)− π

√
x2 + y2

)
,

where θ(z) is the principle angle of z ∈ C. Note that this is an unstable spiral which breaks apart

over time but still settles into a limit cycle.

Using the traditional (stable) spiral wave data [117] (differing only from the dataset used here

in that the term π
√
x2 + y2 in the initial conditions above is replaced by

√
x2 + y2) we noticed an

interesting behavior in that for high noise the resulting model is purely oscillatory. In other words,

the stable spiral limit cycle happens to be well-approximated by the pure-oscillatory model

∂tu = α

(
0 1

−1 0

)
u (3.B.11)

with α ≈ 0.91496. A comparison between this purely oscillatory reduced model and the full model

simulated from the same initial conditions is shown in Figure 3.B.2. For σNR ≤ 0.1 WSINDy

applied to the stable spiral dataset returns the full model, while for σNR > 0.1 the oscillatory

reduced model is more frequently detected. This suggests that although the stable spiral wave is a

hallmark of the λ-ω reaction-diffusion system, from the perspective of data-driven model selection

it is not an ideal candidate for identification of the full model.

3.B.8 Navier-Stokes

∂tω = −∂x(ωu)− ∂y(ωu) +
1

100
∂xxω +

1

100
∂yyω (3.B.12)

A solution is obtained on a spatial grid (x, y) ⊂ [−1, 8] × [−2, 2] with a “cylinder” of diameter 1

located at (0, 0). The immersed boundary projection method [133] with 3rd-order Runge-Kutta

timestepping is used to simulate the flow at spatial and temporal resolutions ∆x = ∆t = 0.02

for 2000 timesteps following the onset of the vortex shedding limit cycle. The dataset (U,V,W)
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Figure 3.B.2: Comparison between the full reaction-diffusion model (3.B.10) (left) and the pure-
oscillatory reduced model (3.B.11) (right) at the final time T = 10 with both models simulated
from the same initial conditions leading to a spiral wave (only the v component is shown, results
for u are similar). The reduced model provides a good approximation away from the boundaries.

contains the velocity components as well as the vorticity for points away from the cylinder and

boundaries in the rectangle (x, y) ∈ [1, 7.5]× [−1.5, 1.5]. We subsample 10% of the data in time for

a final resolution of ∆x = 0.02 and ∆t = 0.2.
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Chapter 4

WSINDy for IPS

Abstract

We develop a weak-form sparse identification method for interacting particle systems (IPS) with

the primary goals of reducing computational complexity for large particle number N and offering

robustness to either intrinsic or extrinsic noise. In particular, we use concepts from mean-field

theory of IPS in combination with the weak-form sparse identification of nonlinear dynamics al-

gorithm (WSINDy) to provide a fast and reliable system identification scheme for recovering the

governing stochastic differential equations for an IPS when the number of particles per experiment

N is on the order of several thousands and the number of experiments M is less than 100. This

is in contrast to existing work showing that system identification for N less than 100 and M on

the order of several thousand is feasible using strong-form methods. We prove that under some

standard regularity assumptions the scheme converges with rate O(N−1/2) in the ordinary least

squares setting and we demonstrate the convergence rate numerically on several systems in one and

two spatial dimensions. Our examples include a canonical problem from homogenization theory

(as a first step towards learning coarse-grained models), the dynamics of an attractive-repulsive

swarm, and the IPS description of the parabolic-elliptic Keller-Segel model for chemotaxis. Code

is available at https://github.com/MathBioCU/WSINDy_IPS.

https://github.com/MathBioCU/WSINDy_IPS
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4.1 Problem Statement

Recently there has been considerable interest in the methodology of data-driven discovery for

governing equations. Building on the Sparse Identification of Nonlinear Dynamics (SINDy) [23],

we developed a weak form version (WSINDy) for ODEs [100] and for PDEs [99]. In this work,

we develop a formulation for discovering governing stochastic differential equations (SDEs) for

interacting particle systems (IPS). To promote clarity and for reference later in the chapter, we

first state the problem of interest. Subsequently, we will provide a discussion of background concepts

and current results in the literature.

Consider a particle system Xt = (X
(1)
t , . . . , X

(N)
t ) ∈ RNd where on some fixed time window

t ∈ [0, T ], each particle X
(i)
t ∈ Rd evolves according to the overdamped dynamics

dX
(i)
t =

(
−∇K ∗ µNt

(
X

(i)
t

)
−∇V

(
X

(i)
t

))
dt+ σ(X

(i)
t ) dB

(i)
t (4.1.1)

with initial data X
(i)
0 each drawn independently from some probability measure µ0 ∈ Pp(Rd),

where Pp(Rd) is the space probability measures on Rd with finite pth moment1. Here, K is the

interaction potential defining the pairwise forces between particles, V is the local potential containing

all exogenous forces, σ is the diffusivity, and
(
B

(i)
t

)
i=1,...,N

are independent Brownian motions each

adapted to the same filtered probability space (Ω,B,P, (Ft)t≥0). The empirical measure is defined

µNt :=
1

N

N∑
i=1

δ
X

(i)
t
,

and the convolution ∇K ∗ µNt is defined

∇K ∗ µNt (x) = ∇
∫
Rd
K(x− y) dµNt (y) =

1

N

N∑
i=1

∇K
(
x−X(i)

t

)
where we set ∇K(0) = 0 whenever ∇K(0) is undefined. The recovery problem we wish to solve is

the following.

(P) Let XXX = (X
(1)
t , . . . ,X

(M)
t ) be discrete-time data at L timepoints t := (t1, . . . , tL) for M i.i.d.

trials of the process (4.1.1) with K = K?, V = V ?, and σ = σ? and let YYY = XXX + ε be a corrupted

dataset. For some fixed compact domain D ⊂ Rd containing supp (YYY), and finite-dimensional

hypothesis spaces2 HK ⊂ L2(D −D), HV ⊂ L2(D), and Hσ ⊂ L2(D), solve(
K̂, V̂ , σ̂

)
= argmin
K∈HK ,V ∈HV ,σ∈Hσ

‖∇K −∇K?‖L2(D−D) + ‖∇V −∇V ?‖L2(D) + ‖σ − σ?‖L2(D) .

The problem (P) is clearly intractable because we do not have access to K?, V ?, or σ?, and

1We define the pth moment of a probability measure µ for p ≥ 0 by Mp(µ) :=
∫
Rd |x|

pdµ(x).
2The set D −D is defined D −D = {x− y : (x, y) ∈ D ×D}.
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moreover the interactions between these terms render simultaneous identification of them ill-posed.

We consider two cases: (i) ε 6= 0 and σ? = 0, corresponding to purely extrinsic noise, and (ii) ε = 0

and σ? 6= 0, corresponding to purely intrinsic noise. The extrinsic noise case is important for many

applications, such as cell tracking, where uncertainty is present in the position measurements. In

this case we examine ε representing i.i.d. Gaussian noise with mean zero and variance3 ε2Id added

to each particle position in XXX. In the case of purely intrinsic noise, identification of the diffusivity σ?

is required as well as the deterministic forces on each particle as defined by K? and V ?. A natural

next step is to consider the case with both extrinsic and intrinsic noise. However, the combined

noise case is sufficiently nuanced as to render it beyond the scope of this chapter, and we leave it

for future work.

4.2 Background

Interacting particle systems (IPS) such as (4.1.1) are used to describe physical and artificial

phenomena in a range of fields including astrophysics [146, 56], molecular dynamics [82], cellular

biology [125, 138, 10], and opinion dynamics [14]. In many cases the number of particles N is large,

with cell migration experiments often tracking 103-106 cells and simulations in physics (molecular

dynamics, particle-in-cell, etc.) requiring N in the range 106-1012. Inference of such systems from

particle data thus requires efficient means of computing pairwise forces from O(N2) interactions

at each timestep for multiple candidate interaction potentials K. Frequently, so-called mean-field

equations at the continuum level are sufficient to describe the evolution of the system, however

in many cases (e.g. chemotaxis in biology [74]) only phenomenological mean-field equations are

available. Moreover, it is often unclear how many particles N are needed for a mean-field description

to suffice. Many disciplines are now developing machine learning techniques to extract coarse-

grained dynamics from high-fidelity simulations (see [54] for a recent review in molecular dynamics).

In this work we provide a means for inferring governing mean-field equations from particle data

assumed to follow the dynamics (4.1.1) that is highly efficient for large N , and is effective in learning

mean-field equations when N is in range 103-105.

Inference of the drift and diffusion terms for stochastic differential equations (SDEs) is by now a

mature field, with the primary method being maximum-likelihood estimation, which uses Girsanov’s

theorem together with the Radon-Nykodym derivative to arrive at a log-likelihood function for

regression. See [11, 87] for some early works and [12] for a textbook on this approach. More

recently, sparse regression approaches using the Kramers-Moyal expansion have been developed

[20, 25, 83] and the authors of [105] use sparse regression to learn population level ODEs from

agent-based modeling simulations. The authors of [22] also derived a bias-correcting regression

framework for inferring the drift and diffusion in underdamped Langevin dynamics, and in [33] a

neural network-based algorithm for inferring SDEs was developed.

3By Id we mean the identity in Rd.
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Only in the last few years have significant strides been made towards parameter inference of

interacting particle systems such as (4.1.1) from data. Apart from some exceptions, such as a Gaus-

sian process regression algorithm recently developed in [46], applications of maximum likelihood

theory are by far the most frequently studied. An early but often overlooked work by Kasonga [71]

extends the maximum-likelihood approach to inference of the interaction potential K, assuming

full availability of the continuous particle trajectories and the diffusivity σ. Two decades later,

Bishwal [13] further extended this approach to discrete particle observations in the specific context

of linear particle interactions. In both cases, a sequence of finite-dimensional subspaces is used to

approximate the interaction function, and convergence is shown as the dimension of the subspace

J and number of particles N both approach infinity. More recently, the maximum likelihood ap-

proach has been carried out in [19, 90] in the case of radial interactions and in [31] in the case

of linear particle interactions and single-trajectory data (i.e. one instance of the particle system).

The authors of [127] recently developed an online maximum likelihood method for inference of IPS,

and in [55] maximum likelihood is applied to parameter estimation in an IPS for pedestrian flow.

It should also be noted that parameter estimation for IPS is common in biological sciences, with

the most frequently used technique being nonlinear least squares with a cost function comprised of

summary statistics [92, 125].

Problem (P) is made challenging by the coupled effects of K, V , and σ. In each of the previously

mentioned algorithms, the assumption is made that σ is known and/or that K takes a specific

form (radial or linear). In addition, the maximum likelihood-based approach approximates the

differential dX
(i)
t of particle i using a 1st-order finite difference: dX

(i)
t ≈ X

(i)
t+∆t − X

(i)
t , which is

especially ill-suited to problems involving extrinsic noise in the particle positions. Our primary

goal is to show that the weak-form sparse regression framework allows for identification of the full

model (K,V, σ), with significantly reduced computational complexity, when N is on the order of

several thousands or more. We use a two-step process: the density of particles is approximated

using a density kernel G and then the WSINDy algorithm (weak-form sparse identification of

nonlinear dynamics) is applied in the PDE setting [100, 99]. WSINDy is a modified version of the

original SINDy algorithm [23, 117] where the weak formulation of the dynamics is enforced using

a family of test functions that offers reduced computational complexity, high-accuracy recovery in

low-noise regimes, and increased robustness to high-noise scenarios. The feasibility of this approach

for IPS is grounded in the convergence of IPS to associated mean-field equations. The reduction

in computational complexity follows from the reduction in evaluation of candidate potentials (as

discussed in Section 4.4.2), as well as the convolutional nature of the weak-form algorithm.

To the best of our knowledge, we present here the first weak-form sparse regression approach

for inference of interacting particle systems, however we now review several related approaches that

have recently been developed. In [131], the authors learn local hydrodynamic equations from active

matter particle systems using the SINDy algorithm in the strong-form PDE setting. In contrast to

[131], our approach learns nonlocal equations using the weak-form, however similarly to [131] we
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perform model selection and inference of parameters using sparse regression at the continuum level.

The weak form provides an advantage because no smoothness is required on the particle density (for

requisite smoothness the authors of [131] use a Gaussian kernel, which is more expensive to compute

than simple particle binning as done here). The authors of [3] developed an integral formulation for

inference of plasma physics models from PIC data using SINDy, however their method involves first

computing strong-form derivatives and then averaging, rather than integration by parts against test

functions as done here, and as in [131], the learned models are local. In [81], the authors apply the

maximum likelihood approach in the continuum setting on the underlying nonlocal Fokker-Planck

equation and learn directly the nonlocal PDE using strong-form discretizations of the dynamics.

While we similarly use the continuum setting for inference (albiet in weak form), our approach

differs from [81] in that it is designed for the more realistic setting of discrete-time particle data,

rather than pointwise data on the particle density (assumed to be smooth in [81]).

4.2.1 Contributions

The purpose of the present chapter is to show that the weak form provides an advantage in speed

and accuracy compared with existing inference methods for particle systems when the number of

particles is sufficiently large (on the order of several thousand or more). The key points of this

chapter include:

(I) Formulation of a weak-form sparse recovery algorithm for simultaneous identification of the

particle interaction force K, local potential V , and diffusivity σ from discrete-time particle

data.

(II) Convergence with rate O(N−1/2) of the resulting full-rank least-squares solution as the num-

ber of particles N →∞ and timestep ∆t→ 0.

(III) Numerical illustration of (II) along with robustness to either intrinsic randomness (e.g. Brow-

nian motion) or extrinsic randomness (e.g. additive measurement noise).

4.2.2 Chapter Organization

In Section 4.3 we review results from mean-field theory used to show convergence of the weak-

form method. In Section 4.4 we introduce the WSINDy algorithm applied to interacting particles,

including hyperparameter selection, computational complexity, and convergence of the method un-

der suitable assumptions in the limit of large N . Section 4.5 contains numerical examples exhibiting

the convergence rates of the previous section and examining the robustness of the algorithm to var-

ious sources of corruption, and Section 4.6 contains a discussion of extensions and future directions.

In the Appendix we provide information on the hyperparameters used (4.A), derivation of the ho-

mogenized equation (4.5.3) (4.A.1), results and discussion for the case of small N and large M (in
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comparison with [90]) (4.B), and proofs to technical lemmas (4.C). Table 4.4.1 includes a list of

notations used throughout.

4.3 Review of mean-field theory

Our weak-form approach utilizes that under fairly general assumptions the empirical measure

µNt of the process Xt defined in (4.1.1) converges weakly to µt, the distribution of the associated

mean-field process Xt defined in (4.3.2). Specifically, under suitable assumptions on V , K, σ, and

µ0, there exists T > 0 such that for all t ∈ [0, T ], the mean-field limit4

lim
N→∞

µNt = µt

holds in the weak topology of measures5, where µt is a weak-measure solution to the mean-field

dynamics

∂tµt = ∇ · (µt∇K ∗ µt) +∇ · (µt∇V ) +
1

2

d∑
i,j=1

∂2

∂xi∂xj

(
σσTµt

)
, µ0 ∈ P2(Rd). (4.3.1)

Equation 4.3.1 describes the evolution of the distribution of the McKean-Vlasov process

dXt = −∇K ∗ µt (Xt) dt−∇V (Xt) dt+ σ(Xt) dBt. (4.3.2)

This implies that as N →∞, an initially correlated particle system driven by pairwise interaction

becomes uncorrelated and only interacts with its mean-field distribution µt. In particular, the

following theorem summarizes several mean-field results taken from the review article [65] with

proofs in [132, 96]. 6

Theorem. [65, 132, 96] Assume that ∇K is globally Lipschitz, V = 0, and σ(x) = σ = const. In

addition assume that µ0 ∈ P2(Rd). Then for any T > 0, for all t ≤ T it holds that

(i) There exists a unique solution (Xt, µt) where Xt is a strong solution to (4.3.2) and µt is a

weak-measure solution to (4.3.1).

4We use the notation t → µt to denote the evolution of probability measures. Subscripts will not be used to
denote differentiation.

5Meaning that for all continuous bounded functions φ : Rd → R,
∫
Rd φ(x)dµNt (x)→

∫
Rd φ(x)dµt(x).

6For a function f : Rd → Y , where Y is a metric space with metric ρ, we define Lip(f) by

Lip(f) := sup
x,y∈Rd

ρ(f(x), f(y))

|x− y|

where |·| denotes the Euclidean norm. We say f is Lipschitz when Lip(f) <∞. Also, ‖f‖C1 := ‖f‖∞+
∑d
i=1

∥∥∥ ∂f∂xi ∥∥∥∞.
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(ii) For any φ ∈ C1
b (Rd),

E

∣∣∣∣∣ 1

N

N∑
i=1

φ(X
(i)
t )−

∫
Rd
φ(x)dµt(x)

∣∣∣∣∣ ≤ C ‖φ‖C1√
N

(4.3.3)

with C depending on Lip(∇K) and T .

(iii) For any k ∈ N, a.e.-t < T , the k-particle marginal

ρ
(k),N
t (x1, . . . , xk) :=

∫
Rd(N−k)

FNt (x1, . . . , xk, xk+1, . . . , xN ) dxk+1 · · · dxN

converges weakly to µ⊗kt as N →∞, where FNt ∈ P(RNd) is the distribution of Xt.

The previous result immediately extends to the case of ∇V and σ both globally Lipschitz and

has been extended to ∇K only locally-Lipschitz in [18], ∇K with Coulomb-type singularity at the

origin in [17], and domains with boundaries in [48, 47]. Analysis of the model (4.3.1) continues

to evolve in various contexts, including analysis of equilibria [97, 50, 28] and connections to deep

learning [4]. For our convergence result below we simply assume that K?, V ?, σ? and µ0 are such

that (i) and (ii) from the above theorem hold.

4.3.1 Weak form

Despite the O(N−1/2) convergence of the empirical measure in previous theorem, it is unclear at

what particle number N the mean-field equations become a suitable framework for inference using

particle data, due to the complex variance structure at any finite N . A key piece of the present

work is to show that the weak form of the mean-field equations does indeed provide a suitable

setting when N is at least several thousands. Moreover, since in many cases (4.3.1) can only be

understood in a weak sense, the weak form is the natural framework for identification. We say that

µt is a weak solution to (4.3.1) if for any ψ ∈ C2(Rd × (0, T )) compactly supported it holds that∫ T

0

∫
Rd
∂tψ(x, t) dµt(x)dt =

∫ T

0

∫
Rd

(
∇ψ(x, t) · ∇K ∗ µt(x) +∇ψ(x, t) · ∇V (x)

− 1

2
Tr
(
∇2ψ(x, t)σ(x)σT (x)

) )
dµt(x)dt,

(4.3.4)

where ∇2ψ denotes the Hessian of ψ and Tr(A) is the trace of the matrix A. Our method requires

discretizing (4.3.4) for all ψ ∈ Ψ where Ψ = (ψ1, . . . , ψn) is a suitable test function basis, and

approximating the mean-field distribution µt with a density Ut constructed from discrete particle

data at time t. We then find K,V , and σ within specified finite-dimensional function spaces.
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4.4 Algorithm

We propose the general Algorithm 4.4.1 for discovery of mean-field equations from particle data.

The inputs are a discrete-time sample YYY containing M experiments each with N particle positions

over L timepoints t = (t1, . . . , tL). The following hyperparameters are defined by the user: (i) a

kernel G used to map the empirical measure µNt to an approximate density Ut, (ii) a spatial grid

C over which to evaluate the approximate density Ut = Ut(C), (iii) a library of trial functions

L = {LK ,LV ,Lσ} = {(Kj)
JK
j=1, (Vj)

JV
j=1, (σj)

Jσ
j=1}, (iv) a basis of test functions Ψ = (ψk)

n
k=1, (v)

a quadrature rule over the spatiotemporal grid (C, t) denoted by an inner product 〈·, ·〉, and (vi)

sparsity factors λλλ for the modified sequential thresholding least-squares Algorithm 4.4.2 (MSTLS)

reviewed below. We discuss choices of these hyperparameters in Section 4.4.1, computational

complexity of the algorithm in Section 4.4.2, convergence of the algorithm in Section 4.4.3. In

Section 4.4.4 we briefly discuss gaps between theory and practice. Table 4.4.1 includes a list of

notations used throughout.

4.4.1 Hyperparameter Selection

Quadrature

We assume that the set of gridpoints C in Algorithm 4.4.1 is chosen from some compact domain

D ⊂ Rd containing supp (YYY). The choice of C (and D) must be chosen in conjunction with the

quadrature scheme, which includes integration in time using the given timepoints t as well as space.

For completeness, the inner products in lines 10, 16, 22, and 27 of Algorithm 4.4.1 are defined in

the continuous setting by

〈f, g〉 =

∫ T

0

∫
D
f(x, t)g(x, t)dxdt,

and the convolution in line 10 is defined by

∇Kj ∗ Ut(x) =

∫
D
∇Kj(x− y)Ut(y)dy.

In the present work we adopt the scheme used in the application of WSINDy for local PDEs [99],

which includes the trapezoidal rule in space and time with test functions ψ compactly supported

in D× (0, T ). We take D to be a rectangular domain enclosing supp (YYY) and C ⊂ D to be equally-

spaced in order to efficiently evaluate convolution terms. In what follows we denote by 〈·, ·〉 the

continuous inner product, 〈·, ·〉h the inner product over D × [0, T ] evaluated using the composite

trapezoidal rule in space with meshwidth h and Lebesgue integration in time, and by 〈·, ·〉h,∆t
the trapezoidal rule in both space and time, with meshwidth h in space and ∆t in time. With

some abuse of notation, f ∗ g will denote the convolution of f and g, understood to be discrete or

continuous by the context. Note also that we denote by µN , µ, and U the measures over Rd× [0, T ]

defined by µNt Λ[0,T ], µtΛ[0,T ] and UtΛ[0,T ], respectively, where Λ[0,T ] is the Lebesgue measure on
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Algorithm 4.4.1 WSINDy for identifying mean-field equation (4.3.1) from particle data YYY
(ŵ, λ̂) = WSINDy(YYY, t ; G, C, L, Ψ, 〈·, ·〉 , λλλ)

1: for ` = 1 : L do
2: for m = 1 : M do
3: U

(m)
` =

∫
Rd G(C, y)dµNt` (y) where µNt` is the empirical measure for Y

(m)
t`

4: end for
5: U` = 1

M

∑M
m=1 U

(m)
`

6: end for
7:

8: for j = 1 : JK do
9: for k = 1 : n do

10: GK
kj = 〈∇ψk,U∇Kj ∗U〉

11: end for
12: end for
13:

14: for j = 1 : JV do
15: for k = 1 : n do
16: GV

kj = 〈∇ψk,U∇Vj〉
17: end for
18: end for
19:

20: for j = 1 : Jσ do
21: for k = 1 : n do
22: Gσ

kj = 1
2

∑d
p,q=1

〈
∂xpxqψk, (σjσ

T
j )pqU

〉
23: end for
24: end for
25: G = [GK GV Gσ]
26:

27: for k = 1 : n do
28: bk = 〈∂tψk,U〉
29: end for
30:

31: (ŵ, λ̂) = MSTLS(G,b; λλλ) (see Algorithm 4.4.2)
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[0, T ].

Density Kernel

Having chosen the domain D ⊂ Rd containing the particle data YYY, let P h = {Bk}k be a

partition of D (∪kBk = D) with h indicating the size of the atoms Bk. For the remainder of the

chapter we take Bk to be hypercubes of equal side length h in order to minimize computation time

for integration, although this is by no means necessary. For particle positions Xt, we define the

histogram7

Ut =
∑
k

1

|Bk|
1Bk(x)

(
1

N

∑
i

1Bk(X
(i)
t )

)
=

∫
D
G(x, y)dµNt (y). (4.4.1)

Here the density kernel is defined

G(x, y) =
∑
k

1

|Bk|
1Bk(x)1Bk(y),

and in this setting the corresponding spatial grid C = (ck)k is the set of center-points of the bins

Bk, from which we define the discrete histogram data Ut = Ut(C). The discrete histogram Ut then

serves as an approximation to the mean-field distribution µt.

Pointwise estimation of densities from samples of particles usually requires large numbers of

particles to achieve reasonably low variance, and in general the variance grows inversely proportional

to the bin width h. One benefit of the weak form is that integrating against a histogram U does

not suffer from the same increase in variance with small h. In particular,

Lemma 2. Let (Y (1), Y (2), . . . ) be a sequence of Rd-valued random variables such that the empirical

measure µN of Y := (Y (1), . . . , Y (N)) converges weakly to µ ∈ P(Rd) according to

E
[
(〈ψ, µN 〉 − 〈ψ, µ〉)2

]
≤ C ‖ψ‖2C1N

−1 (4.4.2)

for all ψ ∈ C1(Rd) and C a universal constant. Let U be the histogram computed with kernel G

using (4.4.1) with n bins and equal sidelength h. Then for any ψ in C1(Rd) compactly supported

in D, we have the mean-squared error (for C̃ depending on C and d)

E
[
(〈ψ,U〉h − 〈ψ, µ〉)

2
]
≤ C̃ ‖ψ‖2C1

(
h2 +N−1

)
.

Remark 2. We note that (4.4.2) follows immediately for Y (i) ∼ µ i.i.d.8, and also for Y = Xt a

solution to (4.1.1) at time t with mean-field distribution µ = µt according to (4.3.3) (for suitable

K, V , and σ), which is the setting of the current chapter.

7The indicator function is defined 1A(x) :=

{
1, x ∈ A
0, x /∈ A

.

8In this case (4.4.2) is the variance of a Monte-Carlo estimator for
∫
ψ(x)dµ(x).



89

of Lemma 2. First we note that by compact support of ψ, the trapezoidal rule can be written

〈ψ,U〉h =

〈
ψ,

∫
Rd
G(·, y)dµN (y)

〉
h

=
〈
ψC, µN

〉
=

1

N

N∑
i=1

ψC(Y (i))

where the midpoint approximation ψC of ψ is given by

ψC(x) =

K∑
k=1

ψ(ck)1Bk(x). (4.4.3)

Hence we simply split the error and use (4.4.2):

E
[
(〈ψ,U〉h − 〈ψ, µ〉)

2
]
≤ 2E

[
〈ψC − ψ, µN 〉2

]
+ 2E

[
(〈ψ, µN 〉 − 〈ψ, µ〉)2

]
≤ ‖ψ‖2C1

(
d

2
h2 + 2CN−1

)
.

The previous lemma in particular shows that small bin width h does not negatively impact

〈ψ,U〉h as an estimator of 〈ψ, µ〉, which is in contrast to U(x) as a pointwise estimator of µ(x). For

example, if we assume that Y is sampled from a C1 density µ, it is well known that the mean-square

optimal bin width is h = O(N−1/3) [53]. Summarizing this result, elementary computation reveals

the pointwise bias for x ∈ Bk,

bias(U(x)) = E [U(x)]− µ(x) =
µ(Bk)

|Bk|
− µ(x) := µ(ξ)− µ(x)

for some ξ ∈ Bk. Letting Lk = maxx∈Bk |∇µ(x)|, we have

bias(U(x))2 ≤ L2
k2
d−1h2.

For the variance we get

Var (U(x)) =
1

N

µ(Bk)(1− µ(Bk))

|Bk|2
=
µ(ξ)

N
(1− µ(Bk))

1
√

2
d−1

h
,

and hence a bound for the mean-squared error

E
[
(U(x)− µ(x))2

]
≤ L2

k2
d−1h2 +

µ(ξ)

N
√

2
d−1

h−1.
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Minimizing the bound over h we find an approximately optimal bin width

h∗ =

(
ρ(ξ)

2
3d−1

2 L2
k

)1/3

N−1/3 = O(N−1/3),

which provides an overall pointwise root-mean-squared error of O(N−1/3). Hence, not only does

the weak form remove the inverse h dependence in the variance, but fewer particles are needed to

accurately approximate integrals of the density µ.

Test Function Basis

For the test functions (ψk)1≤k≤n we use the same approach as the PDE setting [99], namely we

fix a reference test function ψ and set

ψk(x, t) = ψ(xk − x, tk − t)

where Q := {(xk, tk)}1≤k≤n is a fixed set of query points. This, together with a separable represen-

tation

ψ(x, t) = φ1(x1) · · ·φd(xd)φd+1(t),

enables construction of the linear system (G,b) using the FFT. We choose φj , 1 ≤ j ≤ d + 1, of

the form

φm,p(v; ∆) := max

(
1−

( v

m∆

)2
, 0

)p
(4.4.4)

where m is the integer support parameter such that φm,p is supported on 2m+ 1 points of spacing

∆ ∈ {h,∆t} and p ≥ 1 is the degree of φm,p. For simplicity we set φj = φmx,px for 1 ≤ j ≤ d and

φd+1 = φmt,pt , so that only the numbers mx, px,mt, pt need to be specified.

Since φm,p has exactly p weak derivatives, px and pt must be at least as large as the maximum

spatial and temporal derivatives appearing in the library L, or px ≥ 2, pt ≥ 1. Larger p results

in higher-accuracy enforcement of the weak form (4.3.4) in low-noise situations (see Lemma 2 of

[100] for details), however the convergence analysis below indicates that smaller Lip(∂αψ), |α| ≤ 2,

may reduce variance. The support parameter m determines the length and time scales of interest

and must be chosen small enough to extract relevant scales yet large enough to sufficiently reduce

variance.

In [99, Appendix A] the authors developed a changepoint algorithm to choose mx,mt, px, pt

automatically from the Fourier spectrum of the data U. Here, for each of the three examples in

Section 4.5, we fix ψ across all particle numbers N , extrinsic noises ε, and intrinsic noises σ, in

order to instead focus on convergence in N . To strike a balance between accuracy and small Lip(ψ)

we choose pt = 3 and px = 5 throughout. We used a combination of the changepoint algorithm

and manual tuning to arrive at mx and mt which work well across all noise levels and numbers of

particles examined. Query points Q are taken to be an equally-spaced subgrid of C with spacing
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sx and st for spatial and temporal coordinates. The resulting values px, pt, mx, mt, sx, and st

determinine the weak discretization scheme and can be found in Appendix 4.A for each example

below.

The results in Section 4.5 appear robust to 3 ≤ px, pt ≤ 9. In addition, choosing mx and

mt specific to each dataset YYY using the changepoint method often improves results. Although

automated in the changepoint algorithm, we recommend visualizing the overlap between the Fourier

spectra of ψ and U when choosing px, pt,mx,mt in order to directly observe which the modes in

the data will experience filtering under convolution with ψ. In general, there is much flexibility in

the choice of ψ. Optimizing ψ continues to be an active area of research.

Trial Function Library

The general Algorithm 4.4.1 does not impose a radial structure for the interaction potential

K, nor does it assume any prior knowledge that the particle system is in fact interacting. In the

examples below9, the libraries LK ,LV ,Lσ are composed of monomial and/or trigonometric terms

to demonstrate that sparse regression is effective in selecting the correct combination of nonlocal

drift, local drift, and diffusion terms. Rank deficiency can result, however, from naive choices of

nonlocal and local bases. Consider the kernel K(x) = 1
2 |x|

2, which satisfies

∇K ∗ µt = x−M1(µt) = ∇V (x)

where V (x) = 1
2 |x −M1(µt)|2 and M1(µt) is the first moment of µt. Since M1(µt) is conserved in

the model (4.3.2) posed in free-space10, including the same power-law terms in both libraries LK
and LV will lead to rank deficiency. This is easily avoided by incorporating known symmetries of

the model (4.3.2), however in general we recommend that the user build the library L incrementally

and monitor the condition number of G while selecting terms.

Sparse Regression

As in [99], we enforce sparsity using a modified sequential thresholding least-squares algorithm

(MSTLS), included as Algorithm 4.4.2 below, where the “modifications” are two-fold. First, we

incorporate into the thresholding step the magnitude of the overall term ‖wjGj‖2 as well as the

coefficient magnitude |wj |, by defining non-uniform lower and upper thresholds
Lλj = λmax

{
1,
‖b‖
‖Gj‖

}
Uλj =

1

λ
min

{
1,
‖b‖
‖Gj‖

} , 1 ≤ j ≤ J, (4.4.5)

9Details of the libraries used in examples can be found in Tables 4.A.1-4.A.3 in Appendix 4.A.
10This is not true in domains with boundaries, where nonlocalities can be seen to impart mean translation [97].
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where J = JK + JV + Jσ is the number of columns in G. Second, we perform a grid search11 over

candidate sparsity parameters λλλ and choose the parameter λ̂ that is the smallest minimizer over λλλ

of the cost function

L(λ) =

∥∥G(wλ −w0)
∥∥

2

‖Gw0‖2
+

∥∥wλ
∥∥

0

J
(4.4.6)

where wλ is the output of the sequential thresholding algorithm with non-uniform thresholds (4.4.5)

and w0 = G†b is the least-squares solution12. The final coefficient vector is then set to ŵ = wλ̂.

Algorithm 4.4.2 Modified sequential thresholding with automatic threshold selection
(ŵ, λ̂) = MSTLS(G ∈ Rn×J,b ∈ Rn,λλλ ∈ Rm,maxits)

1: W = 0 ∈ RJ×m

2: w0 = G†b
3: for i = 1 : m do
4: λ = λλλi
5: ` = 0
6: while ` < maxits do
7: I` = {1 ≤ j ≤ J : Lλj ≤ |w`

j | ≤ Uλj } (Thresholding step: see equation (4.4.5))

8: w`+1 = arg minsupp(w)⊂I` ‖Gw − b‖22
9: ` = `+ 1

10: end while
11: wλ = w`

12: W:,i = wλ

13: end for
14: λ̂ = min (arg minλ∈λλλ L(λ)) (Identificaiton of best λ: see equation (4.4.6))

15: ŵ = wλ̂

We now review some aspects of Algorithm 4.4.2. Results from [158] on the convergence of STLS

carry over for the inner loop of Algorithm 4.4.2, namely if G is full-rank, the inner loop terminates

in at most J iterations, and if maxits≥ J, the resulting coefficient vector wλ is a local minimizer of

the cost function F (w) = ‖Gw − b‖22 + λ2 ‖w‖0. This implies that the full algorithm terminates

in at-most mJ least-squares solves (each on a subset of columns of G).

When considering recovery of the true weight vector w?, Theorem 1 below implies convergence

in particle number N of ŵ to w? when G is full-rank. The rate of convergence depends implicitly

on the condition number of G, hence it is recommended that one build the library L incrementally,

stopping before the conditional number κ(G) grows too large. If G is rank deficient, classical

recovery guarantees from compressive sensing do not necessarily apply, due to high correlations be-

tween the columns of G (recall each column is constructed from the same dataset U)13. One may

employ additional regularization (e.g. Tikhonov regularization as in [117]); however, in general, im-

11Note that this is feasible because the STLS algorithm terminates in finitely many iterations.
12The Moore-Penrose inverse A† is defined for a rank-r matrix A using the reduced SVD A = UrΣrV

∗
r as A† :=

VrΣ
−1
r U∗r . The subscript r denotes restriction to the first r columns.

13In particular, correlations result in large mutual incoherence, which renders algorithms such as Basis Pursuit,
Orthogonal Matching Pursuit, and Hard Thresholding Pursuit useless (see [52, Chapter 5] for details).
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provements to existing sparse regression algorithms for rank-deficient, noisy, and highly-correlated

matrices is an active area of research.

The bounds (4.4.5) enforce a quasi-dominant balance rule, such that ‖wjGj‖2 is within− log10(λ)

orders of magnitude from ‖b‖2 and |wj | is within − log10(λ) orders of magnitude from 1 (the coef-

ficient of time derivative ∂tµt). This is specifically designed to handle poorly-scaled data (see the

Burgers and Korteweg-de Vries examples in [99]), however we leave a more thorough examination

of the thresholding requirements necessary for models with multiple scales to future work.

As the sum of two relative errors, minimizers of the cost function L equally weight the accuracy

and sparsity of wλ̂. By choosing λ̂ to be the smallest minimizer of L over λλλ, we identify the

thresholds λ ∈ λλλ such that λ < λ̂ as those resulting in an overfit model. We commonly choose λλλ

to be log-equally spaced (e.g. 50 points from 10−4 to 1), and starting from a coarse grid, refine λλλ

until the minimum of L is stationary.

4.4.2 Computational Complexity

To compute convolutions against ∇K for each K ∈ LK , we first evaluate (∂xiK)1≤i≤d at the

grid C−C defined by

C−C := {x ∈ Rd : x = (i1h, . . . , idh), −n` ≤ i` ≤ n`},

where h is the spacing of C and n`, 1 ≤ ` ≤ d, is the number of points in C along the `th coordinate.

Computing14 ∂xiK := ∂xiK(C − C) requires 2d|C| evaluations of K, where |C| =
∏d
`=1 n` is the

number of points in C. We then use the d-dimensional FFT to compute the convolutions

∂xiK ∗Ut ≈ ∂xiK ∗ Ut(C), t ∈ t

where only entries corresponding to particle interactions within C are retained. For d = 1 this

amounts to O(|C| log |C|) flops per timestep. For d = 2 and higher dimensions, the d-dimensional

FFT is considerably slower unless one of the arrays is separable. To enforce separability, trial

interaction potentials in LK can be chosen to be a sum of separable functions,

K(x) =

Q∑
q=1

k1,q(x1) · · · kd,q(xd), (4.4.7)

in which case only a series of one-dimensional FFTs are needed to compute ∂xiK ∗Ut, and again

the cost is O(|C| log |C|) per timestep. When K is not separable, a low-rank approximation can

14Note that C−C is simply C shifted to lie in the positive orthant {x ∈ Rd : x` ≥ 0, 1 ≤ ` ≤ d} and reflected
through each coordinate plane x` = 0. In this way C−C discretizes the set D−D := {x− y ∈ Rd : (x, y) ∈ D×D}
containing all observed interparticle distances.
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be computed from ∂xiK,

∂xiK ≈
Q∑
q=1

σqk1,q ⊗ · · · ⊗ kd,q (4.4.8)

which again reduces convolutions to a series of one-dimensional FFTs. For d = 2, this is ac-

complished using the truncated SVD, while for higher dimensions there does not exist a unique

best rank-Q tensor approximation, although several efficient algorithms are available to compute

a sufficiently accurate decomposition [94, 130, 66] (and the field of fast tensor decompositions is

advancing rapidly).

We propose to compute convolutions by first computing a low-rank decomposition of ∂xiK

using the randomized truncated SVD [155] or a suitable randomized tensor decomposition and

then applying the d-dimensional FFT as a series of one-dimensional FFTs. In the examples below

we consider only d = 1 and d = 2, and leave extension to higher dimensions to future work.

Using low-rank approximations, the mean-field approach provides a significant reduction in

computational complexity compared to direct evaluations of particle trajectories when N is suffi-

ciently large. A particle-level computation of the nonlocal force in weak-form requires evaluating

terms of the form

L∑
`=1

 1

N2

N∑
i=1

N∑
j=1

∂xψ(X
(i)
t`
, t`)∂xK(X

(i)
t`
−X(j)

t`
)

∆t =
〈
∂xψ, µ

N (∂xK ∗ µN )
〉
h,∆t

.

For a single candidate interaction potentialK, a collection of J test functions ψ, andM experiments,

this amounts to MLN2 +MLNJ function evaluations in Rd and O(MLN2J) flops. If we use the

proposed method, employing the convolutional weak form with a separable reference test function

ψ (as in WSINDy for PDEs [99]) and exploiting a rank Q approximation of ∂xK when computing

convolutions against interaction potential, we instead evaluate

∂xψ ∗ (U(∂xK ∗ U))

using O(LQ|C| log(|C|)) flops and only 2d|C| evaluations of ∂xK, reused at each of the L time-

points15. Figure 4.4.1 provides a visualization of the reduction in function evaluations for L = 100

timepoints and M = 10 experiments over a range of N and |C|1/d (points along each spatial dimen-

sion when |C| is a hypercube) in d = 2 and d = 3 spatial dimensions. Table 4.A.4 in Appendix 4.A

lists walltimes for the examples below, showing that with N = 64, 000 particles the full algorithm

implemented in MATLAB runs in under 10 seconds with all computations in serial on a laptop

with an AMD Ryzen 7 pro 4750u processor, and requiring less than 8Gb of RAM. The dependence

on N is only through the O(N) computation of the histrogram, hence this approach may find

applications in physical coarse-graining (e.g. of molecular dynamics or plasma simulations).

15We neglect the cost of computing the histogram U and evaluating ψ(C), together amounting to an additional
O(NML+ |C|) flops, as these terms are lower order and reused in each column of G and b.
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Figure 4.4.1: Factor by which the mean-field evaluation of interaction forces using histograms
reduces total function evaluations as a function of particle number N and average gridpoints per
dimension |C|1/d for data with M = 10 experiments each with L = 100 timepoints. For example,
with d = 2 spatial dimensions (left) and N > 2000 particles, the number of function evaluations is
reduced by at least a factor of 104.

4.4.3 Convergence

We now show that the estimators K̂, V̂ , and σ̂ of the weak-form method converge with a rate

O(h + N−1/2 + ∆tη) when ordinary least squares is used (i.e. λλλ = 0) and only M = 1 experiment

is available. Here η > 0 is the Hölder exponent of the sample paths of the process Xt. We assume

that D, C, G, P h and the resulting histogram U = (Ut)t≤T are as in Section 4.4.1. We make the

following assumptions on the true model and resulting linear system throughout this section.

Assumptions H. Let p ≥ 1 be fixed.

(H.1) For each N ≥ 2, Xt = (X
(1)
t , . . . , X

(N)
t ) is a strong solution to (4.1.1) for t ∈ [0, T ], and for

some η > 0 the sample paths t→ X
(i)
t (ω) are almost-surely η-Hölder continuous, i.e. for some

Cη > 0,

|X(i)
t (ω)−X(i)

s (ω)| ≤ Cη|t− s|η, ∀ 0 ≤ s ≤ t ≤ T, ∀ 1 ≤ i ≤ N, for a.e. ω ∈ Ω.

(H.2) The initial particle distribution µ0 satisfies the moment bound∫
Rd
|x|pdµ0(x) := Mp <∞.

(H.3) ∇K? and ∇V ? satisfy for some Cp > 0 the growth bound:

|∇V ?(x)−∇V ?(y)|+ |∇K?(x)−∇K?(y)| ≤ Cp|x− y|(1 + max{|x|, |y|}p−1), x, y ∈ Rd.



96

(H.4) For the same constant Cp > 0, it holds that16

‖σ?(x)− σ?(y)‖F ≤ Cp|x− y|
1/2(1 + max{|x|, |y|}p/2−1/2), x, y ∈ Rd

(H.5) The test functions (ψk)1≤k≤n ⊂ C2(Rd × (0, T )) are compactly supported and together with

the library L are such that G has full column rank with17
∥∥G†∥∥

1
≤ CG almost surely for

some constant CG > 0.

(H.6) The true functions K?, V ?, and σ? are in the span of L.

We will now define some notation and state some technical lemmas with proofs found in Ap-

pendix 4.C. Define the weak-form operator

L (ρ, ψ, 〈·, ·〉) :=

〈
∂tψ −∇ψ · ∇K? ∗ ρ−∇ψ · ∇V ? +

1

2
Tr
(
∇2ψσ?(σ?)T

)
, ρ

〉
, (4.4.9)

where ρ = (ρt)t≤T is a curve in Pp(Rd), ψ is a C2 function compactly supported over Rd × (0, T ),

and 〈·, ·〉 is an inner product over Rd × (0, T ). If ρ = (µt)t≤T is a weak solution to (4.3.1) and 〈·, ·〉
is the L2(Rd) inner product then L (ρ, ψ, 〈·, ·〉) = 0. If instead ρ = (µNt )t≤T , then by Itô’s formula

L (ρ, ψ, 〈·, ·〉) takes the form of an Itô integral, and we have the following:

Lemma 3. Under Assumptions (H.1)-(H.5), there exists a constant C > 0 independent of N such

that

E
[∣∣L (µN , ψ, 〈·, ·〉)

∣∣] ≤ C√
N
.

Proof. See Appendix 4.C.

With the following lemma, we can relate the histogram U to the empirical measure µN through

L using the inner product 〈·, ·〉h defined by trapezoidal-rule integration in space and continuous

integration in time.

Lemma 4. Under Assumptions (H.1)-(H.5), for C independent of N and h, it holds that

E
[
|L (U,ψ, 〈·, ·〉h)−L (µN , ψ, 〈·, ·〉)|

]
≤ Ch.

Proof. See Appendix 4.C.

To incorporate discrete-time effects, we consider the difference between L (U,ψ, 〈·, ·〉h) and

L (U,ψ, 〈·, ·〉h,∆t), where recall that 〈·, ·〉h,∆t denotes trapezoidal rule integration in space with

meshwidth h and in time with sampling rate ∆t.

16For A ∈ Rd×d the Frobenius norm is defined ‖A‖F =
√

Tr(ATA)
17
∥∥G†∥∥

q
is the induced matrix q-norm of G†.
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Lemma 5. Under Assumptions (H.1)-(H.5), for C independent of N , h, and ∆t, it holds that

E
[
|L (U,ψ, 〈·, ·〉h)−L (U,ψ, 〈·, ·〉h,∆t)|

]
≤ C(h+ ∆tη).

Proof. See Appendix 4.C.

The previous estimates directly lead to the following bound on the model coefficients ŵ:

Theorem 1. Assume that Assumptions H hold. Let ŵ be the learned model coefficients and w?

the true model coefficients. For C independent of N , h, and ∆t it holds that

E [‖ŵ −w?‖1] ≤ C
(
h+N−1/2 + ∆tη

)
.

Proof. Using that K?, V ?, and σ? are in the span of L (H.6), we have that

bk = 〈∂tψk,U〉h,∆t = L (U,ψk, 〈·, ·〉h,∆t) + GT
kw? := Lk + GT

kw?,

where GT
k is the kth row of G. From Lemmas 3-5 we have

E [|Lk|] ≤ E
[
|L (U,ψk, 〈·, ·〉h,∆t)−L (U,ψk, 〈·, ·〉h)|

]
+E

[
|L (U,ψk, 〈·, ·〉h)−L (µN , ψk, 〈·, ·〉)|

]
+ E

[
|L (µN , ψk, 〈·, ·〉)|

]
≤ C ′

(
h+N−1/2 + ∆tη

)
.

Using that G is full rank, it holds that ŵ = G†b = G†L + w?, hence the result follows from the

uniform bound on
∥∥G†∥∥

1
(H.5):

E [‖ŵ −w?‖1] ≤ E
[
‖G†‖1 ‖L‖1

]
≤ C ′CG

(
h+N−1/2 + ∆tη

)
.

Under the assumption (H.6), an immediate corollary is

E
[ ∥∥∥K? − K̂

∥∥∥
L2(D−D)

+
∥∥∥V ? − V̂

∥∥∥
L2(D)

+
∥∥∥∥σ?(σ?)T − σ̂(σ̂)T

∥∥
F

∥∥
L2(D)

]
≤ C

(
h+N−1/2 + ∆tη

)
,

(4.4.10)

This follows from

∥∥∥K? − K̂
∥∥∥
L2(D−D)

≤
J∑
j=1

|w?
j − ŵj | ‖Kj‖L2(D−D) ≤

(
sup
j
‖Kj‖L2(D−D)

)
‖w? − ŵ‖1 ,

and similarly for V̂ and σ̂. Finally, setting h = N−α for α > 0 will ensure convergence as N →∞
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and ∆t→ 0.

4.4.4 Theory vs. Practice

We now make several remarks about the practical performance of Algorithm 4.4.1 with respect

to the theoretical convergence of Theorem 1.

Remark 3. An important case of Theorem 1 is σ? = 0, in which case µNt itself is a weak-measure

solution to the mean-field equation (4.3.1) and the algorithm returns, for η ≥ 2, ‖ŵ −w?‖1 ≤
C(h + ∆tη). This partially explains the accuracy observed for purely-extrinsic noise examples in

Figures 4.5.4 and 4.5.8. We note further that in the absence of noise (ε = 0 and σ? = 0, not

included in this work) Algorithm 4.4.1 recovers systems to high accuracy similarly to WSINDy

applied to local dynamical systems [100, 99].

Remark 4. Algorithm 4.4.1 in general implements sparse regression, yet Theorem 1 deals with

ordinary least squares. Since least squares is a common subroutine of many sparse regression

algorithms (inluding the MSTLS algorithm used here), the result is still relevant to sparse regression.

Lastly, the full-rank assumption on G implies that as N → ∞ sequential thresholding reduces to

least squares.

Remark 5. Theorem 1 assumes data from a single experiment (M = 1), while the examples below

show that M > 1 experiments improves results. For any fixed M > 1, the N →∞ limit results in

convergence, however, the N -fixed and M → ∞ limit does not result in convergence, as this does

not lead to the mean-field equations18. The examples below show that using M > 1 has a practical

advantage, and in Appendix 4.B we demonstrate that even for small particle systems (N = 10) the

large M regime yields satisfactory results.

Remark 6. Many interesting examples have non-Lipschitz ∇K, in particular a lack of smoothness

at x = 0. If µNt does not converge to a singular measure as N → ∞, then the bound (4.C.4)

holds for ∇K with a jump discontinuity at x = 0, where an additional O(h) term arises from

pairwise interactions within an O(h) distance. The examples below are chosen in part to show that

O(N−1/2) convergence holds for ∇K with jumps at the origin.

4.5 Examples

We now demonstrate the successful identification of several particle systems in one and two

spatial dimensions as well as the O(N−1/2) convergence predicted in Theorem 1. In each case we

use Algorithm 4.4.1 to discover a mean-field equation of the form (4.3.1) from discrete-time particle

data. For each dataset we simulate the associated interacting particle system Xt given by (4.1.1)

18Note that the opposite convergence holds for the algorithm introduced in [90]: N -fixed, M → ∞ results in
recovery of K.
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Variable Definition Domain

K pairwise interaction potential L1
loc(Rd,R)

V local potential C(Rd,R)

σ diffusivity C(Rd,Rd×d)
N number of particles per experiment {2, 3, . . . }
d dimension of latent space N
T final time (0,∞)

(Ω,B,P, (Ft)t≥0) filtered probability space

(B
(i)
t )Ni=1 independent Rd Brownian motions on

(Ω,B,P, (Ft)t≥0)

X
(i)
t ith particle in the particle system (4.1.1) at

time t
Rd

Xt N -particle system (4.1.1) at time t RNd
µNt empirical measure of Xt P(Rd)
FNt distribution of Xt P(RNd)
Xt mean-field process (4.3.2) at time t Rd
µt distribution of Xt P(Rd)
t L discrete timepoints [0, T ]

XXXt Collection of M independent samples of Xt at
t

RMLNd

YYYt Sample of Xt corrupted with i.i.d. additive
noise

RMLNd

Ut approximate density from particle positions P(Rd)
G density kernel mapping µNt to Ut L1(Rd × Rd,R)

D spatial support of Ut, t ∈ [0, T ] compact subset of
Rd

C discretization of D
Ut discrete approximate density Ut(C)

〈·, ·〉h semi-discrete inner product, trapezoidal rule
over C

〈·, ·〉h,∆t fully-discrete inner product, trapezoidal rule
over C× t

LK library of candidate interaction forces

LV library of candidate local forces

Lσ library of candidate diffusivities

L (LK ,LV ,Lσ)

Ψ set of n test functions (ψk)
n
k=1 C2(Rd × (0, T ))

φm,p(v; ∆) test functions used in this work (equation
(4.4.4))

λλλ set of sparsity thresholds

L loss function for sparsity thresholds (equation
(4.4.6))

Table 4.4.1: Notations used throughout.
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using the Euler-Maruyama scheme (initial conditions and timestep are given in each example). We

assess the ability of WSINDy to select the correct model using the true positivity ratio19

TPR(ŵ) =
TP

TP + FN + FP
(4.5.1)

where TP is the number of correctly identified nonzero coefficients, FN is the number of coefficients

falsely identified as zero, and FP is the number of coefficients falsely identified as nonzero [80].

To demonstrate the O(N−1/2) convergence given by (4.4.10), for correctly identified models (i.e.

TPR(ŵ) = 1) we compute the relative `2-error of the recovered interaction force ∇K̂, local force

∇V̂ , and diffusivity σ̂ over C − C and C, respectively, denoting this by ‖·‖ in the plots below.

Results are averaged over 100 trials.

For the computational grid C we first compute the sample standard deviation s of YYY and we

choose D to be the rectangular grid extending 3s from the mean of YYY in each spatial dimension.

We then set C to have 128 points in x and y for d = 2 dimensions, and 256 points in x for d = 1,

noting that these numbers are fairly arbitrary, and used to show that the grid need not be too

large. We set the sparsity factors so that log10(λλλ) contains 100 equally spaced points from −4 to 0.

More information on the specifications of each example can be found in Appendix 4.A. (MATLAB

code used to generate examples is available at https://github.com/MathBioCU/WSINDy_IPS.)

4.5.1 Two-Dimensional Local Model and Homogenization

The first system we examine is a local model (K?(x, y) = 0) defined by the local potential

V ?(x, y) = −x − y and diffusivity σ?(x, y) =
√

2 (1 + 0.95 cos(ωx) cos(ωy))I2, where I2 is the

identity in R2. This results in a constant advection, variable diffusivity mean-field model20

∂tµt = −∂xµt − ∂yµt + ∆ [(1 + 0.95 cos(ωx) cos(ωy))µt] . (4.5.2)

The purpose of this example is three-fold. First, we are interested in the ability of Algorithm 4.4.1

to correctly identify a local model from a library containing both local and nonlocal terms. Next,

we evaluate whether the O(N−1/2) convergence is realized. Lastly, we investigate whether for large

ω the weak-form identifies the associated homogenized equation (derived in Appendix 4.A.1)

∂tµt = −∂xµt − ∂yµt + ω∆µt, (4.5.3)

where ω is given by the harmonic mean of diffusivity:

ω =

(∫
D

dxdy

1 + 0.95 cos(x) cos(y)

)−1

.

19For example, identification of the true model (supp (ŵ) = supp (w?)) results in a TPR(ŵ) = 1, while identification
of only half of the correct nonzero terms and no additional falsely identified terms results in TPR(ŵ) = 0.5.

20Since the model is local, (4.5.2) is the Fokker-Planck equation for the distribution of each particle, rather than
only in the limit of infinite particles.

https://github.com/MathBioCU/WSINDy_IPS
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Figure 4.5.1: Snapshots at time t = 2∆t = 0.06 (left) and t = 100∆t = 2 (right) of histograms
computed with 128 bins in x and y from 16,384 particles evolving under (4.5.2) with ω = 1 (top)
and ω = 20 (bottom).

For ω ∈ {1, 20} we evolve the particles from an initial Gaussian distribution with mean zero and

covariance I2 and record particle positions for 100 timesteps with ∆t = 0.02 (subsampled from a

simulation with timestep 10−4). We use a rectangular domain D of approximate sidelength 10 and

compute histograms with 128 bins in x and y for a spatial resolution of ∆x ≈ 0.078 (see Figure 4.5.1

for solution snapshots), over which ω ≈ 0.62. For ω = 1 we compare recovered equations with the

full model (4.5.2), while for ω = 20 we compare with (4.5.3), for comparison computing ω over each

domain D using MATLAB’s integral2. Figure 4.5.2 shows that as the particle number increases,

we do in fact recover the desired equations, with TPR(ŵ) approaching one as N increases. For

ω = 1 we observe O(N−1/2) convergence of the local potential V̂ and the diffusivity σ̂. For ω = 20,

we observe approximate O(N−1/2) convergence of V̂ , and σ̂ converging to within 2% of
√

2ω, the

homogenized diffusivity (higher accuracy can hardly be expected for ω = 20 since (4.5.3) is itself

an approximation in the limit of infinite ω).



102

Figure 4.5.2: Convergence of σ̂ (left) and ∇V̂ (middle), recall ‖·‖ denotes the `2 norm, for (4.5.2)
with ω ∈ {1, 20}, as well as TPR(ŵ) (right). For ω = 1, results are compared to the exact model
(4.5.2), while for ω = 20 results are compared to the homogenized equation (4.5.3).

Figure 4.5.3: Histograms computed with 256 bins width h = 0.0234 from 8000 particles in 1D
evolving under K? = KQANR(x) (4.5.4). Top left to top right: σ?(x) = 0, σ?(x) =

√
2(0.1),

σ?(x) =
√

2(0.1)|x−2|. Bottom: deterministic particles with i.i.d. Gaussian noise added to particle
positions with resulting noise ratios (left to right) ε = 0.0316, 0.1, 0.316.
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4.5.2 One-Dimensional Nonlocal Model

We simulate the evolution of particle systems under the quadratic attraction / Newtonian

repulsion potential

KQANR(x) =
1

2
x2 − |x| (4.5.4)

with no external potential (V = 0). The −|x| portion of KQANR , leading to a discontinuity in

∇K, is the one-dimensional free-space Green’s function for −∆. For d ≥ 1, when replaced by

the corresponding Green’s function in d dimensions, the distribution of particles evolves under

KQANR into the characteristic of the unit ball in Rd, which has implications for design and control

of autonomous systems [49]. We compare three diffusivity profiles, σ(x) = 0 corresponding to

zero intrinsic noise, σ(x) =
√

2(0.1) leading to constant-diffusivity intrinsic noise, and σ(x) =√
2(0.1)|x−2| leading to variable-diffusivity intrinsic noise. With zero intrinsic noise (σ(x) = 0), we

examine the effect of extrinsic noise on recovery, and assume uncertainty in the particle positions

due to measurement noise at each timestep, YYY = XXX + ε, for ε ∼ N (0, ε2 ‖Xt‖2RMS) i.i.d. and

ε ∈ {0.01, 0.0316, 0.1, 0.316}. In this way ε is the noise ratio, such that ‖ε‖F / ‖XXX‖F ≈ ε (computed

with ε and XXX stretched into column vectors).

Measurement data consists of 100 timesteps at resolution ∆t = 0.01, coarsened from simulations

with timestep 0.001. Initial particle positions are drawn from a mixture of three Gaussians each

with standard deviation 0.005. Histograms are constructed with 256 bins of width h = 0.0234.

Typical histograms for each noise level are shown in Figure 4.5.3 computed one experiment with

N = 8000 particles.

For the case of extrinsic noise (Figure 4.5.4), we use only one experiment (M = 1) and examine

the number of particles N and the noise ratio ε. We find that recovery is accurate and reliable

for ε ≤ 0.1, yielding correct identification of KQANR with less than 1% relative error in at least

98/100 trials. Increasing N from 500 to 8000 leads to minor improvements in accuracy for ε ≤
0.1, but otherwise has little effect, implying that for low to moderate noise levels the mean-field

equations are readily identifiable even from smaller particle systems. For ε = 10−1/2 ≈ 0.3162 (see

Figure 4.5.3 (bottom right) for an example histogram), we observe a decrease in TPR(ŵ) (Figure

4.5.4 middle panel) resulting from the generic identification of a linear diffusion term ν∂xxu with

ν ≈ 0.05. Using that
√

2ν ≈
√

2(0.05) = ε, we can identify this as the best-fit intrinsic noise

model. Furthermore, increases in N lead to reliable identification of the drift term, as measured

by TPR(ŵdrift) (rightmost panel Figure 4.5.4) which is the restriction of TPR to drift terms LK
and LV .

For constant diffusivity σ(x) =
√

2(0.1) (Figure 4.5.5), the full model is recovered with less than

3% errors in K̂ and σ̂ in at least 98/100 trials when the total particle count NM is at least 8000,

and yields errors less than 1% for NM ≥ 16,000. The error trends for K̂ and σ̂ in this case both

strongly agree with the predicted O(N−1/2) rate. For non-constant diffusivity σ(x) =
√

2(0.1)|x−2|
(Figure 4.5.6), we also observe robust recovery (TPR(ŵ) ≥ 0.95) for NM ≥ 8000 with error trends
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Figure 4.5.4: Recovery of (4.3.1) in one spatial dimension for K? = KQANR and σ? = 0 under

different levels of observational noise ε. Left: relative error in learned interaction kernel K̂. Middle:
true positivity ratio for full model (4.3.1). Right: true positivity ratio for drift term.

Figure 4.5.5: Recovery of (4.3.1) in one spatial dimension for K? = KQANR and σ? =
√

2(0.1)

close to O(N−1/2), although the accuracy in K̂ and σ̂ is diminished due to the strong order ∆t1/2

convergence of Euler-Maruyama applied to diffusivities σ that are unbounded in x [103].

4.5.3 Two-Dimensional Nonlocal Model

We now discuss an example of singular interaction in two spatial dimensions using the logarith-

mic potential

K(x) =
1

2π
log |x| (4.5.5)

with constant diffusivity σ(x) = σ ∈ {0, 1√
4π
}. This example corresponds to the parabolic-elliptic

Keller-Segel model of chemotaxis, where σc := 1√
4π

is the critical diffusivity such that σ > σc

leads diffusion-dominated spreading of particles throughout the domain (vanishing particle density

at every point in R2) and σ < σc leads to aggregation-dominated concentration of the particle

density to the dirac-delta located at the center of mass of the initial particle density [39, 28].

For σ = 0 we examine the affect of additive i.i.d. measurement noise ε ∼ N (0, ε2 ‖Xt‖2RMS) for

ε ∈ {0.01, 0.0316, 0.1, 0.316, 1}.
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Figure 4.5.6: Recovery of (4.3.1) in one spatial dimension for K? = KQANR and σ? =
√

2(0.1)|x−2|

Figure 4.5.7: Histograms created from 4000 particles evolving under logarithmic attraction (equa-
tion (4.5.5)) with varying noise levels at times (left to right) t = 4, t = 8, and t = 12. Top:
ε = 0.316, σ = 0 (extrinsic only). Bottom: ε = 0, σ = (4π)−1/2 ≈ 0.28 (intrinsic only).
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Figure 4.5.8: Recovery of (4.3.1) in two spatial dimensions with K? given by (4.5.5) from deter-
ministic particles (σ? = 0) with extrinsic noise ε.

We simulate the particle system with a cutoff potential

Kδ(x) =


1

2π

(
log(δ)− 1 +

|x|
δ

)
, |x| < δ

1

2π
log |x|, |x| ≥ δ

(4.5.6)

with δ = 0.01, so that Kδ is Lipschitz and ∇Kδ has a jump discontinuity at the origin. Initial

particle positions are uniformly distributed on a disk of radius 2 and the particle position data

consists of 81 timepoints recorded at a resolution ∆t = 0.1, coarsened from 0.0025. Histograms are

created with 128 × 128 bins in x and y of sidelength h = 0.0469 (see Figure 4.5.7 for histogram

snapshots over time). We examine M = 20, . . . , 26 experiments with N = 2000 or N = 4000

particles.

In Figure 4.5.8 we observe a similar trend in the σ = 0 case as in the 1D nonlocal example,

namely that recovery for ε ≤ 0.1 is robust with low errors in K̂ (on the order of 0.0032), only

in this case the full model is robustly recovered up to ε = 0.316. At ε = 1, with N = 4000 the

method frequently identifies a diffusion term ν∆u with ν ≈ 0.5 = ε2/2, and for N = 2000 the

method occasionally identifies the backwards diffusion equation ∂tµt = −α∆µt, α > 0. This is

easily prevented by enforcing positivity of σ, however we leave this and other constraints as an

extension for future work.

With diffusivity σ = 1√
4π

, we obtain TPR(ŵ) approximately greater than 0.95 forNM ≥ 16, 000

(Figure 4.5.9, right), with an error trend in K̂ following an O(N−1/2) rate, and a trend in σ̂ of

roughly O(N−2/3). Since convergence in M for any fixed N is not covered by the theorem above,

this shows that combining multiple experiments may yield similar accuracy trends for moderately-

sized particle systems.
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Figure 4.5.9: Recovery of (4.3.1) in two spatial dimensions with K? given by (4.5.5) and σ? = 1√
4π

.

4.6 Discussion

We have developed a weak-form method for sparse identification of governing equations for

interacting particle systems using the formalism of mean-field equations. In particular, we have

investigating two lines of inquiry, (1) is the mean-field setting applicable for inference from medium-

size batches of particles? And (2) can a low-cost, low-regularity density approximation such as a

histogram be used to enforce weak-form agreement with the mean-field PDE? We have demon-

strated on several examples that the answer is yes to both questions, despite the fact that the

mean-field equations are only valid in the limit of infinitely many particles (N →∞). This frame-

work is suitable for systems of several thousand particles in one and two spatial dimensions, and we

have proved convergence in N for the associated least-squares problem using simple histograms as

approximate particle densities. In addition, the sparse regression approach allows one to identify

the full system, including interaction potential K, local potential V , and diffusivity σ.

It was initially unclear whether the mean-field setting could be utilized in weak form for finite

particle batches, hence this can be seen as a proof of concept for particle systems with N in the

range 103−105. With convergence in N and low computational complexity, our weak-form approach

is well-suited as is for much larger particle systems. In the opposite regime, for small fixed N , the

authors of [90] show that their maximum likelihood-based method converges as M → ∞ (i.e. in

the limit of infinite experiments). While the same convergence does not hold for our weak-form

method, the results in Section 4.5 suggest that in practice, combining M independent experiments

each with N particles improves results. Furthermore, we include evidence in Appendix 4.B that

even for small N , our method correctly identifies the mean-field model when M is large enough,

with performance similar to that in [90]. We leave a full investigation of the interplay between M

and N to future work.

In the operable regime of N > 103, there is potential for improvements and extensions in many

directions. On the subject of density estimation, histograms are highly efficient, yet they lead to

piecewise-constant approximations of µt and hence O(h) errors. Choosing a density kernel G to

achieve high-accuracy quadrature without sacrificing the O(N) runtime of histogram computation
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seems prudent, although one must be cautious about making assumptions on the smoothness of

mean-field distribution µt. For instance, in the 1D nonlocal example 4.5.2, discontinuities develop

in µt for the case σ = 0, hence a histogram approximation is more appropriate than using e.g. a

Gaussian kernel.

The computational grid C, quadrature method 〈·, ·〉h,∆t, and reference test function ψ may also

be optimized further or adapted to specific problems. The approach chosen here of C equally-spaced

and separable piecewise-polynomial ψ, along with intergration using the trapezoidal quadrature,

has several advantages, including high accuracy and fast computation using convolutions. However,

this may need adjustment for higher dimensions. It might be advantageous to adapt C to the data

YYY, however this may prevent one from evaluating (G,b) using the FFT if a non-uniform grid results,

hence increases the overall computational complexity. One could also use multiple reference test

functions ψ. The possibilities of varying the test functions (within the smoothness requirements of

the library L) has been largely unexplored in weak-form identification methods.

Several theoretical questions remain unanswered, namely model recovery statistics for finite N .

As a consequence of Theorem 1, as well as convergence results on sequential thresholding [158], we

have that G being full-rank and L containing the true model is sufficient to guarantee convergence

ŵ → w? as N → ∞ at the rate O(N−1/2). Noise, whether extrinsic or intrinsic, for finite N

may result in identification of an incorrect model when G is poorly-conditioned. The effect is

more severe if the true model has a small coefficient, which requires a small threshold λ, which

correspondingly may lead to a non-sparse solution. These are sensitivities of any sparse regression

algorithm (see e.g. [24]) and accounting for the effect of noise and poor conditioning is an active

area of research in equation discovery.

We also note that several researchers have focused on the uniqueness in kernel identifiability

[81, 84]. This issue does not directly apply to our scenario21 of identifying the triple (K,V, σ).

Moreover, in the cases we considered, we do not see any identifiability issues (e.g. rank deficiency)

even in the high noise case with low particle number. Quantifying the transition to identifiability

as N →∞ as a function of the condition number κ(G) is an important subject for future work.

For extensions, the example system (4.5.2) and resulting homogenization motivates further

study of effective equations for systems with complex microstructure. In other fields this is described

as coarse-graining. A related line of study is inference of 2nd-order particle systems, as explored

in [131], which often lead to an infinite hierachy of mean-field equations. Our weak-form approach

may provide a principled method for truncated and closing such hierarchies using particle data.

Another extension is to enforce convex constraints in the regression problem, such as lower bounds

on diffusivity, or K with long-range attraction depending on the distribution ρrr ∈ P([0,∞)) of

pairwise distances (see [90] for further use of ρrr). Finally, the framework we’ve introduced can

easily be used to find nonlocal models from continuous solution data (e.g. given U instead of YYY),

whereby questions of nonlocal representations of models can be investigated.

21E.g. due to multiple representations of the drift combining both nonlocal and local terms - see Section 4.4.1
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Lastly, we note that MATLAB code is available at https://github.com/MathBioCU/WSINDy_

IPS.
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Appendix

4.A Specifications for Examples

In Tables 4.A.1 - 4.A.4 we include hyperparameter specifications and resulting attributes of

Algorithm 4.4.1 applied to the three examples in Section 4.5. In particular, we report the typical

walltime in Table 4.A.4, showing that on each example Algorithm 4.4.1 learns the mean-field

equation from a dataset with ∼ 64, 000 particles in under 10 seconds.

4.A.1 Derivation of homogenized equation (4.5.3)

We briefly provide a derivation of the homogenized equation (4.5.3) in the static case. Let

Ω ∈ Rd be an open bounded domain with smooth boundary and Td be the d-dimensional torus.

Let a(x, y) : Ω× Td → R be continuous and uniformly bounded below,

a(x, y) ≥ α > 0, (x, y) ∈ Ω× Td.

Then for any f ∈ L2(Ω), the equation

−∆ (a(x, x/ε)uε(x)) = f(x), uε
∣∣
∂Ω

= 0

has a unique weak solution uε ∈ L2(Ω) given by

uε(x) =
(Gf)(x)

a(x, x/ε)
,

Mean-field Term Trial Function Library

∇ · (U∇K ∗ U) ∇ · (U∇|x|m ∗ U), m ∈ {1, 2, 3, 4, 5, 6, 7}
∇ · (U∇V ) ∂xi (U cos(mx1) cos(nx2)), (m,n) ∈ {0, 1, 2, 3, 4, 5}, i ∈ {1, 2}
1
2

∑d
i,j=1

∂2(UσσT )ij
∂xi∂xj

∆(U cos(mx1) cos(nx2)), (m,n) ∈ {0, 1, 2, 3, 4, 5}

Table 4.A.1: Trial function library for local 2D example (Section 4.5.1).
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Mean-field Term Trial Function Library

∇ · (U∇K ∗ U) ∂x · (U∂x|x|m ∗ U), m ∈ {1, 2, 3, 4, 5, 6, 7}
∇ · (U∇V ) ∂x (Uxm), m ∈ {0, 2, 3, 4, 5, 6, 7, 8}
1
2

∑d
i,j=1

∂2(UσσT )ij
∂xi∂xj

∂xx(Uxm), m ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

Table 4.A.2: Trial function library for nonlocal 1D example (Section 4.5.2).

Mean-field Term Trial Function Library

∇ · (U∇K ∗ U)


∇ · (U∇|x|m ∗ U) m ∈ {2, 3, 4, 5, 6}

∇ · (U∇
[
|x|1/2

]
δ
∗ U)

∇ · (U∇ [|x|(log |x| − 1)]δ ∗ U)

∇ · (U∇ [log |x|]δ ∗ U)

∇ · (U∇V ) ∂xi (Uxm1 x
n
2 ) 0 ≤ m+ n ≤ 5, i ∈ {1, 2}

1
2

∑d
i,j=1

∂2(UσσT )ij
∂xi∂xj

∆(U cos(mx1) cos(nx2)), (m,n) ∈ {0, 1, 2}

Table 4.A.3: Trial function library for nonlocal 2D example (Section 4.5.3). Interaction potentials
[K ]δ indicate cutoff potentials of the form (4.5.6) with δ = 0.01 such that the resulting potential
is Lipschitz.

Example (mx,mt) (px, pt) (sx, st) size(U) (h,∆t)

Local 2D (31,16) (5,3) (10,5) 128× 128× 101 (0.078, 0.02)

Nonlocal 1D (29,8) (5,3) (5,1) 256× 101 (0.023, 0.01)

Nonlocal 2D (25,8) (5,3) (8,1) 128× 128× 81 (0.047, 0.1)

Example ‖w?‖0 size(G) ‖G†‖1 κ2(G) Walltime

Local 2D {4, 3} 686× 85 2.0× 103 3.0× 107 9.2s

Nonlocal 1D {2, 3, 5} 3400× 24 1.3× 105 8.7× 108 0.7s

Nonlocal 2D {1, 2} 6500× 59 1.1× 104 6.4× 106 8.5s

Table 4.A.4: Discretization parameters and general information for examples. The number of
nonzeros in the true weight vector ‖w?‖0 is given for each parameter set examined. Namely, for
the local 2D example, ω = 1 results in a 4-term model, while the homogenized case ω = 20 results
in a three-term model. For the nonlocal 1D example, σ ∈ {0,

√
2(0.1),

√
2(0.1)|x − 2|} result in

2-term, 3-term, and 5-term models, respectively, and for the nonlocal 2D example σ ∈ {0, (4π)−1}
results in 1-term and 2-term models. The norm

∥∥G†∥∥
1
, condition number κ2(G) and walltime are

listed for representative samples with 64,000 total particles.
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where G is the Green’s function for (−∆)−1 with homogenenous Dirichlet boundary conditions on

∂Ω. By the coercivity of a we have that ‖uε‖L2(Ω) is uniformly bounded in ε. By the lemma in

[147, Section 2.4], up to a subsequence {εj}j∈N, there exists a function u(x, y) periodic in its second

variable such that for any continuous function φ(x, x/ε), we have

lim
ε→0

∫
uε(x)φ(x, x/ε)dx =

∫∫
u(x, y)φ(x, y)dydx.

Setting φ(x, y) = φ(x), we see that on the same subsequence, uε ⇀
∫
u(x, y)dy. Applying the same

lemma to the constant series uε = 1 and letting φ(x, x/ε) = φ(x)a−1(x, x/ε), we see that (up to

possibly a second subsequence),

a−1(x, x/ε) ⇀

∫
dy

a(x, y)
.

Letting a∗(x) :=
(∫ dy

a(x,y)

)−1
and putting together the previous limits, we see that

uε(x) ⇀ u∗(x) :=

∫
u(x, y)dy = (Gf)(x)

∫
dy

a(x, y)
=:

(Gf)(x)

a∗(x)
,

and hence u∗ solves the homogenized equation

∆ (a∗u∗) = f.

4.B Recovery for small N and large M

The related maximum-likelihood approach [90] is shown to be suitable for small N and large

M , hence a natural line of inquiry is the performance of Algorithm 4.4.1 in this regime. Theorem

1 does not apply to this regime, and in fact convergence of the algorithm is not expected: letting

UM,N
t = 1

M

∑M
m=1 U

(m),N
t where U

(m),N
t is the approximate density constructed from experiment m

with N particles, we have the weak-measure convergence UM,N
t → ρ

(1),N
t as M →∞, where ρ

(1),N
t

is the 1-particle marginal of the distribution of Xt in RNd. Unlike the mean-field distribution µt,

ρ
(1),N
t is not a weak solution to the mean-field Fokker-Planck equation (4.3.1), instead we have

∂tρ
(1),N
t =

N − 1

N
∇ ·
∫
Rd
∇K(x− y)ρ

(2),N
t (x, y)dy +∇ ·

(
∇V ρ(1),N

t

)
+

1

2

d∑
i,j=1

∂xixj (σσ
Tρ

(1),N
t ),

holding weakly, which depends on the 2-particle marginal ρ
(2),N
t [65]. Nevertheless, using the 1D

nonlocal example in Section 4.5.2 with σ =
√

2(0.1) ≈ 0.45, we observe in Figure 4.B.1 (right panel)

that our weak-form algorithm correctly identifies the model in > 96% of trials with just N = 10

particles per experiment when M ∈ [210, 212], and that error in K (left panel) follows a O(M−1/2)
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Figure 4.B.1: Recovery of (4.3.1) in one spatial dimension for K? = KQANR and σ? =
√

2(0.1)
with only N = 10 particles per experiment.

trend. At M = 4096 ≈ 103.61 experiments the error22 in K is less than 1% and the runtime is

approximately 0.9s. The lack of convergence in M is reflected in the diffusivity (middle panel of

Figure 4.B.1), where the error appears to plateau at around 1.7% for h ≈ 0.0468 and at 3.5%

for h ≈ 0.0234. The lower resolution (larger binwidth h) appears to yield slightly better results,

possibly indicating that larger h produces a coarse-graining effect such that ρ(2),N ≈ ρ(1),N ⊗ ρ(1),N

over larger distances, although this effect deserves more thorough study in future work.

4.C Technical Lemmas

We now prove Lemmas 3-5 under Assumption H. First, some consequences of Assumption H.

(I) The η-Hölder continuity of sample paths (H.1) implies that for each t ∈ [0, T ],

∫
Rd
|x|pdµNt =

1

N

N∑
i=1

|X(i)
t |p ≤

2p

N

N∑
i=1

|X(i)
0 |

p + Cη2
ptpη.

Together with the pth moment bound on µ0 (H.2), this implies

E

[
sup
t≤T

∫
Rd
|x|pdµNt

]
≤ 2p(Mp + CηT

pη), (4.C.1)

independent of N .

(II) The growth bounds on ∇K?, ∇V ?, and σ? (H.3)-(H.4) imply that for some C > 0,

|∇K?(x)|+ |∇V ?(x)|+
∥∥σ?(x)(σ?(x))T

∥∥
F
≤ C(1 + |x|p), (4.C.2)

where ‖·‖F is the Frobenius norm.

22For comparison, in [90] Fig. 4 the error in recovering K using the maximum-likelihood approach on an opinion
dynamics example for M = 103.6, N = 10, and σ = 0.5 is approximately 100× 10−1.2% = 6.3%.
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Proof of Lemma 3. Applying Itô’s formula to the process 1
N

∑N
i=1 ψ(X(i), t), we get that

L (µN , ψ, 〈·, ·〉) =
1

N

N∑
i=1

∫ T

0
∇ψ(X

(i)
t , t)Tσ?(X

(i)
t )dB

(i)
t .

Note that each integral on the right-hand side is a local martingale, since (4.C.2) and (H.5) ensures

boundedness of ∇ψ(x, t)Tσ?(x) over any compact set in Rd, hence has mean zero. By independence

of the Brownian motions B
(i)
t , exchangeability of X

(i)
t , the moment bound (4.C.1), and the growth

bounds on σ (H.4), the Itô isometry gives us

E
[
L (µN , ψ, 〈·, ·〉)2

]
=

1

N

∫ T

0
E
X∼ρ(1)

t

[∣∣∇ψ(X, t)Tσ?(X)
∣∣2] dt

=
1

N

∫ T

0
E
[∫

Rd

∣∣∇ψ(x, t)Tσ?(x)
∣∣2 dµNt (x)

]
dt

≤ C ′

N
‖∇ψ‖22,∞

∫ T

0
E
[
1 +

∫
Rd
|x|pdµNt (x)

]
dt

≤ CN−1

where C depends on Mp, Cp, T , and ψ. The result follows from Jensen’s inequality23.

Proof of Lemma 4. Using the notation fC from Lemma 2 to denote piecewise constant approxima-

tion of a function f over the domain D using the grid C, we have

L (U,ψ, 〈·, ·〉h)−L (µN , ψ, 〈·, ·〉) = −
( 〈

(∇ψ · ((∇K?)C ∗ µN ))C, µN
〉
−
〈
∇ψ · ∇K? ∗ µN , µN

〉 )
︸ ︷︷ ︸

Einteract

+
〈
∂tψ

C − ∂tψ, µN
〉
−
〈
((∇ψ · ∇V ?)C −∇ψ · ∇V ?, µN

〉
+

1

2

〈
Tr
(
∇2ψσ?(σ?)T

)C − Tr
(
∇2ψσ?(σ?)T

)
, µN

〉
= Einteract + Elinear.

The right-hand side includes an interaction error Einteract followed by a sum Elinear of terms that

are linear in the difference between a locally Lipschitz function and its piecewise constant approxi-

mation. Hence, we can bound Elinear using smoothness of ψ (H.5), the moment assumptions on µNt
(H.2), and the growth assumptions on V and σ (H.3)-(H.4). Specifically, for x ∈ Bk with center

ck, the growth assumptions imply

|∇ψ(x) · ∇V ?(x)−∇ψ(ck) · ∇V ?(ck)| ≤ Ch
(

(‖∇ψ‖2,∞ + Lip(∇ψ))(1 + |x|p)
)

|Tr
(
∇2ψ(x)σ?(x)(σ?(x))T

)
− Tr

(
∇2ψ(ck)σ?(ck)(σ?(ck))T

)
| ≤ C ′h

(
(
∥∥∇2ψ

∥∥
F,∞ + Lip(∇2ψ))(1 + |x|p)

)
23‖f‖p,q for vector-valued functions f : Rd → Rd denotes the Lq norm over x of the `p norm of f(x). Also recall

that ρ
(1)
t is the X

(1)
t -marginal of the process Xt ∈ RdN .
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for C and C ′ depending on p, d, and Cp, hence

|Elinear| ≤ C ′′ sup
|α|≤2

Lip(∂αψ)

(
T +

∫ T

0

∫
Rd
|x|pdµNt dt

)
h. (4.C.3)

Similarly, for the interaction error we use that for x ∈ Bk and y ∈ Bj with centers ck and cj , we

have

|∇ψ(ck) · ∇K?(ck − cj)−∇ψ(x) · ∇K?(x− y)| ≤ |∇ψ(ck)| |∇K?(ck − cj)−∇K?(x− y)|

+ |∇ψ(ck)−∇ψ(x)| |∇K?(x− y)|

≤ C ′′′h
(
‖∇ψ‖2,∞ + Lip(∇ψ)

)
(1 + |x− y|p)

with C ′′′ also depending on p, d, and Cp. From this we have

|Einteract| ≤ C ′′′′
(
T +

∫ T

0

∫
Rd

∫
Rd
|x− y|pdµNt (y)dµNt (x)dt

)
h. (4.C.4)

The result follows from taking expectation and using the moment bound (4.C.1), where the final

constant C depends on p, d, Cp,Mp, T, η, and ψ.

Proof of Lemma 5. Again rewriting the spatial trapezoidal-rule integration in the form
∫
Rd ϕ

C(x)dµNt ,

we see that

L (U,ψ, 〈·, ·〉h)−L (U,ψ, 〈·, ·〉h,∆t) (4.C.5)

reduces to four terms of the form

A(ϕ) :=
1

N

N∑
i=1

(∫ T

0
ϕC(X

(i)
t )dt− ∆t

2

L∑
`=1

(
ϕC(X

(i)
t`+1

) + ϕC(X
(i)
t`

)
))

,

for ϕ ∈
{
∂tψ,∇ψ · ∇V ?,Tr(∇2ψσ?(σ?)T ),∇ψ · ∇K? ∗ µNt

}
. Similarly to the bounds derived for

|ϕ(x)− ϕC(x)| in Lemma 4, the growth bounds on V ?,K? and σ? imply in general that

|ϕ(x)− ϕ(y)| ≤ C|x− y| (1 + max{|x|, |y|}p) .

Rewriting the summands in A(ϕ),

∫ T

0
ϕC(X

(i)
t )dt− ∆t

2

L∑
`=1

(
ϕC(X

(i)
t`+1

) + ϕC(X
(i)
t`

)
)

=
L∑
`=1

∫ t`+1

t`

(
t− t`

∆t

)
(ϕC(X

(i)
t )− ϕC(X

(i)
t`+1

))dt︸ ︷︷ ︸
I1

+

∫ t`+1

t`

(
t`+1 − t

∆t

)
(ϕC(X

(i)
t )− ϕC(X

(i)
t`

))dt︸ ︷︷ ︸
I2

,
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and using

|ϕC(x)−ϕC(y)| ≤ |ϕ(x)−ϕ(ck)|+ |ϕ(x)−ϕ(y)|+ |ϕ(y)−ϕ(c`)| ≤ C(2h+ |x−y|)(1+max{|x|, |y|}p)

where x ∈ Bk and y ∈ B`, we see that for I1,∣∣∣∣∫ t`+1

t`

(
t− t`

∆t

)
(ϕC(X

(i)
t )− ϕC(X

(i)
t`+1

))dt

∣∣∣∣
≤
∫ t`+1

t`

(
t− t`

∆t

)
C(2h+ |X(i)

t −X
(i)
t`+1
|)(1 + max{|X(i)

t |, |X
(i)
t`+1
|}p)dt

≤
∫ t`+1

t`

(
t− t`

∆t

)
C ′(2h+ |t`+1 − t|η|)(1 + max{|X(i)

t |, |X
(i)
t`+1
|}p)dt.

Taking expectation on both sides and using the moment bound (4.C.1), we get

E
[∣∣∣∣∫ t`+1

t`

(
t− t`

∆t

)
(ϕC(X

(i)
t )− ϕC(X

(i)
t`+1

))dt

∣∣∣∣] ≤ C (∆th+ ∆t1+η
)
.

We get the same bound for I2. Summing over `, and taking the average in i, we then get

E [|A(ϕ)|] ≤ C(h+ ∆tη),

which implies the desired bound on the difference (4.C.5).
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Chapter 5

Online WSINDy

Abstract

This chapter presents an online algorithm for identification of partial differential equations (PDEs)

based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The al-

gorithm is online in a sense that if performs the identification task by processing solution snapshots

that arrive sequentially. The core of the method combines a weak-form discretization of candidate

PDEs with an online proximal gradient descent approach to the sparse regression problem. In par-

ticular, we do not regularize the `0-pseudo-norm, instead finding that directly applying its proximal

operator (which corresponds to a hard thresholding) leads to efficient online system identification

from noisy data. We demonstrate the success of the method on the Kuramoto-Sivashinsky equa-

tion, the nonlinear wave equation with time-varying wavespeed, and the linear wave equation, in

one, two, and three spatial dimensions, respectively. In particular, our examples show that the

method is capable of identifying and tracking systems with coefficients that vary abruptly in time,

and offers a streaming alternative to problems in higher dimensions.
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5.1 Context and Motivations

.... System identification (SID) and parameter estimation of dynamical systems are ubiquitous

tasks in scientific research and engineering, and are required steps in many control frameworks. A

typical strategy is to solve a regression problem based on sample trajectories from the underlying

system, with few samples available in practice. Identification of dynamical systems is a classical

field of research [86]; recently, several works provided new theoretical insights on the efficacy of

classical first-order optimization methods in solving SID problems based on single trajectories (see,

e.g., [44, 51, 119, 128] and references therein). Existing results in this context are heavily focused

on discrete-time, finite-dimensional systems of known functional form, yet the focus on single-

trajectory data paves the way for identification of more complex dynamical systems in the online

setting, which is the subject of the current chapter.

By suitably discretizing candidate dynamical systems using data and employing sparse regres-

sion, SID and parameter estimation can be accomplished simultaneously. A notable development

in this pursuit is the sparse identification of nonlinear dynamics (SINDy) algorithm ([23]), a general

framework for discovering dynamical systems using sparse regression. Since the inception of SINDy

in the context of autonomous ordinary differential equations (ODEs), sparse recovery algorithms

have been developed for autonomous partial differential equations (PDEs) ([117, 120]), stochastic

differential equations (SDEs) ([20]), non-autonomous systems ([116]), and coarse-grained equations

([6]), to name a few. Outside of sparse regression approaches, deep learning has also been successful

in identifying PDEs from data [89, 88, 151, 112].

A significant challenge in using SINDy to solve real-world problems is the computation of

derivatives from noisy data. This was initially addressed in the context of ODEs in [121], by simply

integrating candidate ODEs. Within the last few years, the consensus has emerged that weak-form

SINDy (WSINDy, see [99, 100, 98]), where integration against test functions replaces numerical

differentiation, is a powerful method that is significantly more robust to noisy data, particularly in

the context of PDEs. Furthermore, WSINDy’s efficient convolutional formulation makes it a viable

method for identifying PDEs under the constraints of limited memory capacity and computing

power that exist in the online setting1.

The development of online algorithms is a relatively recent pursuit ([162, 60]), yet much progress

has been made in applications to finance ([61]), data processing ([38]), and predictive control ([77])

(see [37, 64] for a recent surveys). In the context of sparse regression, several works have addressed

online `1-minimization and other methods of regularizing the `0 pseudo-norm, although not in

the context of learning dynamical systems ([153, 157, 67, 156, 78, 154, 129]). To the best of our

knowledge, neither SINDy nor WSINDy have been merged with an online learning algorithm for

PDEs2.

1The method developed here could also be adapted to the standard SINDy algorithm, however we choose to focus
on the weak form for its demonstrated abilities to handle noisy data with low computational overhead.

2There has, however, been work related to leveraging the equation learning ability of SINDy with Model Predictive
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A successful approach for identifying PDEs and tracking parameters “on the fly” using multi-

dimensional snapshots of data arriving sequentially over time would greatly benefit many areas of

science and engineering. Possible paradigms in this online setting include identifying time-varying

coefficients, SID in higher dimensions (where memory constraints require data to be streamed even

for offline problems), and detecting changes in the dominant balance physics of the system, as

terms become active or inactive dynamically. In this way, online sparse equation discovery has the

potential to open doors to new application areas, and even improve performance of existing batch

methods.

We confront some of these challenges in this work by considering spatiotemporal dynamical sys-

tems and incoming data snapshots at every timestep. In the spirit of classical online algorithms, we

develop an online WSINDy framework to this setting of streaming data with memory constraints

by replacing full-data availability and batch optimization capabilities with data bursts and light-

weight proximal gradient descent iterations to approximately solve the sparse regression problem.

At each iteration we process only the incoming snapshot in time, and we do not assume the ability

to compute least-squares projections apart from the initial guess. We focus on three prototyp-

ical systems, (1) the Kuramoto-Sivashinsky (KS) equation, which exhibits spatiotemporal chaos

and thus has time-fluctuating Fourier content, (2) the nonlinear wave equation in a time-variable

medium in two spatial dimensions, and (3) the linear wave equation in three spatial dimensions, a

preliminary example of a system in higher dimensions.

5.1.1 Notation

Vector-valued objects will be bold and lower-case, x ∈ Rd for d > 1, while multi-dimensional

arrays will be bold and upper-case, X ∈ Rn1×···×nd for ni ∈ N, 1 ≤ i ≤ d. To disambiguate between

iteration and exponentiation, we refer to the qth element in a list of multi-dimensional arrays using

superscripts in parentheses (e.g. x(q) or X(q)), whereas raising to the power q (where applicable)

is simply denoted Xq. Reference to an element within a multi-dimensional array is given as a

subscript (e.g. xi or Xi1,...,id). For a matrix G ∈ Cm×n, we denote by GS the restriction of G to

the columns in S ⊂ {1, . . . , n}. By some abuse of notation, GT
S = (GS)T . Similary, for a vector

w ∈ Cn, we let wS ∈ R|S| be the restriction of w to the entries in S, where |S| denotes the number

of elements of S. The complement of S within {1, . . . , n} is denoted Sc. All scalar-valued objects

will be in lower-case, with iteration, set membership, etc. denoted by subscripts (i.e. uq is the qth

element in the list {u1, . . . , uq−1, uq, uq+1, . . . }).

Control ([68]).
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5.2 Problem Formulation

We consider PDEs of the form

Dααα(0)
u(x, t) =

I,J∑
i,j=1

w?
(i−1)J+j(t)D

ααα(i)
fj(u(x, t),x), (x, t) ∈ Ω× [0,∞), (5.2.1)

where Ω ⊂ Rd is a bounded open set. The operators Dααα(i)
for 1 ≤ i ≤ I represent any linear

differential operator in the variables (x, t) ∈ Rd+1, where ααα(i) = (ααα
(i)
1 , . . . ,ααα

(i)
d+1) is a multi-index

such that

Dααα(i)
v =

∂ααα
(i)
1 +···+ααα(i)

d +ααα
(i)
d+1

∂x
ααα

(i)
1

1 · · · ∂x
ααα

(i)
d
d ∂tααα

(i)
d+1

v.

In this work we consider left-hand side operators Dααα(0)
to be either ∂t or ∂tt, which are given in

two spatial dimensions (d = 2) by the multi-indices ααα(0) = (0, 0, 1) and ααα(0) = (0, 0, 2), respectively.

The functions fj : R×Rd → R, 1 ≤ j ≤ J , include all possible nonlinearities present in the model,

and together with the linear operators Dααα(i)
comprise the feature library Θ := {Dααα(i)

fj}I,Ji,j=1. The

weight vector w?(t) ∈ RIJ is assumed to be sparse in Θ at each time t, and is allowed to vary in t.

We assume that at each time t = k∆t for k ∈ N and fixed timestep ∆t we are given a solution

snapshot U(t) ∈ Rn1×···×nd of the form

U(t) = u(X, t) + ε (5.2.2)

where u solves (5.2.1) for some weight vector w? and X ∈ Rn1×···×nd is a fixed known spatial grid

of points in Ω having ni points in the ith dimension and equal spacing ∆x in each dimension.

Here ε represents i.i.d. mean-zero noise with fixed finite variance σ2 associated with sampling the

underlying solution u(x, t) at any point x ∈ Ω. We write U = (U(0),U(∆t), . . . ,U(k∆t), . . . ) to

denote the entire dataset in time. The problem is stated as follows.

Problem: Assume that a total of Kmem snapshots {U(t−(Kmem−1)∆t), . . . ,U(t)} can be stored in

memory at each time t and that at time t + ∆t a new snapshot U(t+∆t) arrives, replacing the

oldest snapshot in memory. Given the sampling model (5.2.2) for unknown σ2, unknown ground

truth PDE (5.2.1), and fixed library Θ := {Dααα(i)
fj}I,Ji,j=1, solve for coefficients ŵ(t) such that

supt>0

∥∥ŵ(t) −w?(t)
∥∥ is bounded.

5.3 Batch WSINDy

In the batch setting, assuming w? is constant in time, the weak-form sparse identification of

nonlinear dynamics algorithm (WSINDy) proposed in [99, 100] solves this problem efficiently by

first convolving equation (5.2.1) with a smooth function ψ(x, t), compactly supported in Ω× [0, T ].

After integrating by parts to put all partial derivatives onto ψ, this leads to the convolutional weak
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form:

Dααα(0)
ψ ∗ u(x, t) =

I,J∑
i,j=1

w?
(i−1)J+jD

ααα(i)
ψ ∗ fj(u, ·)(x, t), (5.3.1)

where convolutions are performed over space and time. For efficiency, the test function ψ is chosen

to be separable,

ψ(x, t) = φ1(x1) · · ·φd(xd)φd+1(t). (5.3.2)

For example, it can be chosen using the Fourier spectrum of the noisy data to mitigate high-

frequency noise (see [99]). Once ψ is chosen, we discretize the problem by selecting a finite set of

query points Q := {(x(q), tq)}Qq=1 ⊂ Ω × (0, T ) and evaluating (5.3.1) at Q, replacing u with the

full dataset U. Convolutions can be efficiently computed using the fast Fourier transform (FFT),

which, due to the compact support of ψ, is equivalent to the trapezoidal rule and is highly accurate

in the noise-free case (σ2 = 0). This gives us the linear system

b ≈ Gw?,

where the qth entry of b is bq = Dααα(0)
ψ ∗U(x(q), tq) and qth entry of the ((i− 1)J + j)th column

of G is Gq,(i−1)J+j = Dααα(i)
ψ ∗ fj(U, ·)(x(q), tq). Using the assumption that w? is sparse, we solve

this linear system for ŵ ≈ w? by solving the sparse recovery problem

min
w∈RIJ

F (w;λ) = min
w∈RIJ

1

2
‖Gw − b‖22 +

1

2
λ2 ‖w‖0 . (5.3.3)

The sparsity threshold λ > 0 must be set by the user and is designed to strike a balance be-

tween fitting the data, associated with low residual ‖Gw − b‖2, and finding a parsimonious model,

indicated by low ‖w‖0 (and its value is typically calibrated via cross-validation) [59, 52].

With a large enough library Θ, a sparse vector ŵ is required in order to interpret and efficiently

simulate the resulting PDE. Replacing the `0-pseudonorm with e.g. an `2 penalty (i.e. ridge regres-

sion) may shrink coefficients, but will not result in a sparse ŵ. In addition, the columns of G are

typically highly correlated since they are each constructed from the same dataset U, which leads

to many popular algorithms for solving (5.3.3) performing poorly, such as convex relaxation using

the `1-norm [95, 42]. In the batch setting, the following approach has proved to be successful under

various noise levels and systems of interest. For λ > 0 define the inner sequential thresholding step

MSTLS(G,b;λ )


w(0) = G†b

I(`) = {1 ≤ k ≤ IJ : Lk(λ) ≤ |w(`)
k | ≤ Uk(λ)}

w(`+1) = arg min
supp(w)⊂I(`)

‖Gw − b‖22 .
(5.3.4)
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Letting Gk be the kth column of G, the lower and upper bounds are defined
Lk(λ) = λmax

{
1,
‖b‖
‖Gk‖

}
Uk(λ) =

1

λ
min

{
1,
‖b‖
‖Gk‖

} , 1 ≤ k ≤ IJ. (5.3.5)

The sparsity threshold λ̂ is then selected as the smallest minimizer of the cost function

L(λ) =
‖G(w(λ)−w(0))‖2

‖Gw(0)‖2
+
‖w(λ)‖0
IJ

(5.3.6)

where w(λ) := MSTLS(G,b;λ ). We find λ̂ via grid search and set ŵ = MSTLS(G,b; λ̂) as the

output of the algorithm. In words, this is a modified sequential thresholding algorithm with non-

uniform thresholds (5.3.5) chosen based on the norms of the underlying library terms G(i−1)J+j ≈
Dααα(i)

ψ∗fj(u) relative to the response vector b ≈ Dααα(0)
ψ∗u. The purpose of this is to (a) incorporate

relative sizes of library terms Gkw
?
k along with absolute sizes of coefficients w? in the thresholding

step, and (b) choose λ automatically.

5.4 Online WSINDy

The online setting is defined by data snapshots U(t) arriving sequentially over time. An estimate

ŵ(t) of the true parameters w?(t) must be computed before the arrival of the next snapshot U(t+∆t)

using only a fixed number Kmem of previous snapshots. Without access to the full time series U,

combined effects of the sample rate ∆t, the number of snapshots Kmem, and the intrinsic timescales

of the data determine the identifiability of the system: ∆t must be small enough to accurately

compute time integrals, but large enough that the data U is sufficiently dynamic over the time

window Kmem∆t. Corruptions from noise have a greater impact because variance is not reduced

by considering many samples in time, as was the case in the batch setting. Moreover, in realistic

settings, solving for ŵ(t) before arrival of the next snapshot U(t+∆t) fundamentally limits the size

of (G,b) and the number of iterations one may perform using any sparse solver.

The online setting is inherently restrictive, yet it appears well-suited for an important set of

problems that are challenging offline and for settings where ŵ(t) must be obtained without revisiting

past data. In the batch setting, when the coefficient vector w? varies over time, the library Θ

must include time-dependent terms and may grow too large to successfully solve for an accurate

sparse solution. Another issue arises with high-dimensional datasets (as in cosmology, turbulence,

molecular dynamics, etc.), which cannot easily be processed in a single batch. In these cases an

online approach is natural and advantageous even if solutions ŵ(t) are not themselves required

“online”.
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For the online approach, at each time t we seek to minimize the online cost function

min
w∈RIJ

Ft(w;λt) = min
w∈RIJ

1

2

∥∥∥G(t)w − b(t)
∥∥∥2

2
+

1

2
λ2
t ‖w‖0 , (5.4.1)

where (G(t),b(t)) is the linear system created from the Kmem slices {U(t−(Kmem−1)∆t), . . . ,U(t)} at

time t. Notice also that we allow λt to change, as the initial guess λ0 may not be optimal. In

this online setting, we assume that we do not have the luxury of computing least-squares solutions

(other than the initial guess), so we cannot use the approach outlined in (5.3.4)-(5.3.6), where

(5.3.4) requires multiple least-squares solves, and performing a grid search over λ values requires

multiple solves of (5.3.4). Hence, we consider the following online algorithm, which is simply the

online proximal gradient descent combined with a decision tree update for λt at each step:
z(t) = ŵ(t) − αt(G(t))T

(
G(t)ŵ(t) − b(t)

)
ŵ(t+∆t) = Hλt

(
z(t)
)

λt+∆t = T (λt, ŵ
(t+∆t),∆λ, λmax).

(5.4.2)

The hard thresholding operator Hλ(w) is the proximal operator of 1
2λ

2 ‖w‖0 and is defined as

(Hλ(w))k =

wk, |wk| ≥ λ

0, otherwise.
(5.4.3)

The map T updates λt according to

T (λt, ŵ
(t+∆t); ∆λ, λmax) =

(1−∆λ)λt, Ft(ŵ
(t+∆t), λt) > Ft−∆t(ŵ

(t), λt) & St+∆t ( St

(1−∆λ)λt + λmax∆λ,

Ft(ŵ
(t+∆t), λt) > Ft−∆t(ŵ

(t), λt) & St ( St+∆t

Ft(ŵ
(t+∆t), λt) ≤ Ft−∆t(ŵ

(t), λt) & St = St+∆t.

λt, otherwise.

(5.4.4)

In words, there are two possible updates to λt: a convex combination between λt and 0 and a convex

combination between λt and λmax. The former decreases λt and occurs when library terms are

thresholded to zero and the objective function Ft increases. The latter increase λt and occurs when

either (a) library terms are added and Ft increases or (b) the support set St := supp
(
ŵ(t)

)
doesn’t

change and Ft does not increase3. At each step we set αt = 1/‖(G(t))TG
(t)
St
‖2, the optimal stepsize

for pure gradient descent given the support St. As an initial guess we set ŵ(0) =
(
G(0)

)†
b(0), which

is the only least squares solve performed.

3The value for λt (and similarly for αt) can easily be replaced by a constant when additional knowledge is available
(e.g. when w? is known to satisfy certain bounds).
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Remark 7. It is well-known in the batch case that picking λ is problem specific and prone to

errors particularly in the presence of noise (see [99] for a discussion). Commonly some form of

cross-validation is used to select λ offline. This is carried out in [93] for offline PDE identification

using several sparse regression algorithms including proximal gradient descend applied to (5.3.3). It

is less common to update λ over the course of the algorithm, although several strategies for this are

presented in [40]. We stress that for variable-coefficient PDEs, as considered here, a time-varying

λ is necessary, and offline cross validation can at best provide a good initial guess. The update

policy given by T encodes simple objectives of any algorithm for (5.4.1) and works in all examples

presented, however we leave optimizing the update rule as a topic for future work.

Remark 8. Similar to the batch case, we find that non-uniform thresholding greatly improves

results. For brevity, we include in Appendix 5.A a description of how non-uniform thresholds such

as (5.3.5) are incorporated into the online framework. We also note that the theoretical results in

the next section carry over analogously in the non-uniform thresholding case.

5.4.1 Regret and Fixed Point Analysis

The behavior of the online algorithm is in large part dictated by the behavior of the batch

proximal gradient descent method. The proximal gradient descent algorithm applied to the `0

norm is referred to as iterative hard thresholding (IHT) and was first studied rigorously in [15].

The lemmas below review some useful properties that can be found in that work relating solutions

of (5.3.3) and stationary points of the proximal gradient descent algorithm (5.4.2) in the offline

case and for fixed λ. We then use these results to bound the dynamic online regret, which we define

as

RegD(T ) :=
T∑
k=0
t=k∆t

Ft(ŵ
(t);λt)− Ft(w?(t);λt), (5.4.5)

where w?(t) is a global minimizer of Ft(w, λt). In particular, we first have the following:

Lemma 6. Consider w such that one of the following holds:

(i) w is a local minimizer of (5.3.3)

(ii) w = Hλ

(
w −GT (Gw − b)

)
(iii) With S = supp (w), we have that wS ∈ arg minz ‖GSz− b‖22 and

max
i∈Sc

∣∣GT
i (Gw − b)

∣∣ < λ ≤ min
i∈S
|wi| .

Then it holds that (ii) ⇐⇒ (iii) =⇒ (i). Moreover, if w a global minimizer, then (i) =⇒ (iii).

For completeness, a proof of Lemma 6 can be found in Appendix 5.C. For convergence of the

algorithm, we also have the following from [15].
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Lemma 7. Assume that ‖G‖2 < 1. Then the iterates wn+1 = Hλ(wn −GT (Gwn − b)) converge

to a fixed point of (5.3.3).

Lemma 6 implies that fixed points of the batch proximal gradient descent algorithm are local

minimizers of F (w;λ), and moreover that fixed points satisfy a necessary condition for global

optimality given by (iii). Lemma 7 then guarantees4 that iterates wn do indeed converge to a local

minimizer ŵ, and further that supp (wn) = supp (ŵ) for all n ≥ N , for some finite N . However, we

are not aware of results that guarantee recovery of the true support supp (w?), where it is assumed

that b = Gw? + e for noise e. In [16], support recovery is proved for a related algorithm where

Hλ(w) is replaced by Hs(w), which selects the largest s elements of w, but this relies on several

assumptions including a restricted isometry property, small noise e, and knowledge of the sparsity

level s. In the current setting of PDE identification from noisy data, none of these assumptions are

realistic, although a similar support recovery result for algorithm (5.4.2) in the batch case would

fill a gap in the literature.

If a fixed point ŵ with supp (ŵ) = S satisfies that GT
SGS is full rank, then ŵS = G†Sb is the

unique least squares solution over the columns in S. In [107] it is shown that this is sufficient for

ŵ to be a strict local minimizer, and moreover the only local minimizer with support S. Also in

[107] is an extensive treatment of global minimizers of F (w;λ), where it is shown that apart from

a measure-zero set of linear systems (G,b), the global minimizer is unique. We use this to bound

the dynamic regret below.

Theorem 2. Let σ1,t and σn,t denote the first and last singular values of the matrix G(t) ∈ Rm×n.

Assume the following: maxt λt ≤ λ < ∞, mint σn,t ≥ σmin > 0, maxt σ1,t ≤ σmax, and supt αt <

σ−2
max, inft αt > 0. In addition, assume that the global minimizer w?(t) of Ft(w;λt) is unique for

every t and satisfies |S?t | ≥ s > 0 where S? = supp (w?(t)). Finally, assume that the tracking gap is

globally bounded: ‖w?(t)−w?(t+ ∆t)‖2 := dt ≤ d. Then the dynamic regret (5.4.5) grows at-worst

linearly:

RegD(T ) ≤ C1 + C2T

for some C1 > 0 and C2 > 0. In particular, 1
TRegD(T ) remains bounded.

The constants C1 and C2 are specified in the proof, which is presented in Appendix 5.D.

Remark 9. The above result establishes that RegD(T ) increases at-worst linearly in T , but this is

only qualitative (the constants C1 and C2 are not meant to be sharp). Asymptotically, this is the

same rate as online gradient descent applied to the time-varying ordinary least squares problem

([162]), and is a well-known fundamental limit for cases where the tracking gap dt does not go to

zero (see e.g. [8]).

Remark 10. Lines (5.D.1)-(5.D.2) of the proof establish error bounds on the coefficients, which

4The condition ‖G‖2 < 1 in Lemma 7 can be replaced by stepsize α > 1 satisfying α < 1/ ‖G‖22.
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lead to the asymptotic bound

lim sup
t→∞

∥∥∥ŵ(t) −w?(t)
∥∥∥

2
≤ 1

1− ρ
lim sup
t→∞

(
dt + αtλt

√
|St+∆t4S?t |

)
,

where ρ := supt≥0

∥∥I− αt(G(t))TG(t)
∥∥

2
and St+∆t4S?t is the set difference between St+∆t =

supp
(
ŵ(t+∆t)

)
and S?t := supp (w?(t)). This implies that if the tracking error and support differ-

ence go to zero (dt → 0, St+∆t4S?t → ∅) then we recover the true coefficients in the limit.

Remark 11. The assumptions of Theorem 2 are standard for overdetermined G(t) and data that

is not pathological. In particular, upper bounds on σ1,t and dt merely imply that the data does not

blow up, while lower bounds on σn,t and |S?t | imply that the data does not reach an equilibrium

state. While both of these cases, blow up and equilibration, are interesting, the former rarely

occurs in practice, and the latter is sufficiently challenging as to require new developments in a

future work. Upper bounds on λt and αt are cosmetic and required for the algorithm to produce

nonzero solutions that are bounded. A lower bound on αt is crucial to ensure ρ < 1, which

is necessary for convergence once the correct support has been recovered. We leave the case of

underdetermined G(t) to future work, but note that in practice the algorithm generally reaches an

overdetermined subset after finitely many iterations.

Below we only examine cases where S?t = S? is fixed, and find that over a wide range of

parameters the correct support is found in finitely many iterations. This leads to scenarios where

the dynamic regret depends only on dt asymptotically (see Figure 5.5.3 for a visualization of this

case for the time-varying wave equation). We leave online discovery of PDEs with time-varying

support to future work.

5.5 Numerical Experiments

Our primary focuses are the performance of the algorithm as a function of the number of

snapshots Kmem allowed in memory and the sensitivity of the algorithm to noise. We examine the

following three examples which display a range of dynamics over one to three spatial dimensions:

the Kuramoto-Sivashinsky equation in 1D, a time-varying nonlinear wave equation in 2D, and the

linear wave equation in 3D. We abbreviate each by KS, W2D and W3D. For each experiment we

simulate a noise-free solution Uexact to the given PDE over a long time horizon. We then add i.i.d.

Gaussian noise with mean zero and standard deviation σ = σNR ‖U?‖rms to each data point for a

range of noise ratios5 σNR. After an offline phase where a least squares solution is found from the

first Kmem snapshots, we feed in one new snapshot at each time t and apply the online algorithm

(5.4.2).

5Note that σNR is approximately equal to the ratio ‖ε(:)‖2 / ‖Uexact(:)‖2 of the noise to the true data, where
“Uexact(:)” denotes Uexact stretched into a column vector.
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Algorithm Hyperparameters

We fix as many hyperparameters across examples as possible, and differences are summarized

in Table 5.5.1. In all examples we fix the sparsity threshold update to ∆λ = 0.1, the initial sparsity

threshold to λ0 = 0.0001, and the maximum sparsity threshold to λmax = 0.1. For the library we

use

Θ = {∂kxi(u
j)}, 1 ≤ i ≤ d, 0 ≤ k ≤ 4, 0 ≤ j ≤ 4

in other words all spatial derivatives up to degree 4 of monomials up to degree 4 of the data (ex-

cluding mixed derivatives). For direct comparison of the effects of Kmem and σNR across examples,

we fix the test function ψ in the representation 5.3.2 so that6

φi(xi) =

(
1−

( xi
21∆x

)2
)11

+

, 1 ≤ i ≤ d (5.5.1)

(5.5.2)

and

φd+1(t) =

(
1−

(
t

(Kmem − 1)∆t/2

)2
)9

+

, (5.5.3)

where (z)+ := max{z, 0}. In this way ψ is supported on 2 × 21 + 1 = 43 points in each spatial

dimension and Kmem points in time, although note that (∆x,∆t) change across examples. Since

φd+1(t) is supported on Kmem points, there is only one integration in time at each iteration, so that

the query points are given by Q = {(x(q), tq)}Qq=1 = Qx × {t − (Kmem − 1)∆t/2} where for each

example Qx is fixed across all values of Kmem and σNR. We take Qx ⊂ X to be equally-spaced

and such that the linear system (G(t),b(t)) contains less than 10,000 rows (see Table 5.5.1 for exact

dimensions). Online iteration times are reported below for computations performed on a laptop

with 1.7GHz base clockspeed AMD Ryzen 7 pro 4750u processor and 38.4 GB of RAM.

Remark 12. By defining the temporal test function φd+1(t) to depend on Kmem according to

(5.5.3), the implied strategy is that increasing Kmem (keeping more snapshots in memory) leads to

more accurate integration in the time domain. One could instead fix the test function

φd+1(t) =

(
1−

(
t

m∆t

)2
)9

+

for some m ≤ (Kmem − 1)/2 for all Kmem considered, leading to a fixed integration window of

length 2m + 1 in time. Increasing Kmem would then allow for more integrations in time (i.e. a

6Test functions (5.5.2) and (5.5.3) can be made general by replacing powers px = 11, pt = 9 and spacings mx = 21,
mt = (Kmem − 1)/2 with general values px, pt and mx,mt as in [99, 98]. The resulting general form for ψ has been
shown to be successful across a wide range of systems. However, optimal test function selection is an active area of
research.
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dims(X) T dims(G(t)) (∆x,∆t)

KS 256× 1 3946 214× 21 (0.939, 0.586)

W2D 129× 403 1639 7964× 37 (0.0156, 0.0122)

W3D 128× 128× 128 960 8192× 53 (0.0491, 0.0122)

Table 5.5.1: Resolution and dimensions of datasets used in examples.

larger set of query points Q), adding rows to the linear system (G(t),b(t)). Our chosen strategy

fixes the dimensions of (G(t),b(t)), leading to a more direct comparison across examples. We leave

this trade-off between the number of time integrations and the accuracy of time integrations to

future work.

Performance Analysis

We are concerned with the ability of the algorithm to recover the support of the true model

coefficients S? := supp (w?) as well as the accuracy of ŵ(t) over time, depending primarily on the

number Kmem of solution snapshots allowed in memory and the noise level σNR corrupting the

data. To assess support recovery, we measure the true positivity ratio (TPR)

TPR(ŵ(t)) :=
TP(ŵ(t))

TP(ŵ(t)) + FP(ŵ(t)) + FN(ŵ(t))

where TP(ŵ(t)) := |St ∩ S?| is the number of correctly identified nonzero coefficients, FP(ŵ(t)) :=

|St ∩ (S?)c| is the number of falsely identified nonzero coefficients, and FN(ŵ(t)) := |Sct ∩ S?| is the

number of falsely identified zero coefficients. A TPR of 1 indicates successful support recovery, while

TPR = 0.75 indicates 3/4 terms were correctly identified, and so on. We measure the accuracy of

ŵ(t) in the relative `2-norm:

E2(ŵ(t)) :=
∥∥∥ŵ(t) −w?(t)

∥∥∥
2
/ ‖w?(t)‖2 .

We report the results of TPR(ŵ(t)) and E2(ŵ(t)) averaged over 100 instantiations of noise.

5.5.1 Kuramoto-Sivashinsky (KS)

∂tu = −∂x
(
u2
)
− ∂xxu− ∂xxxxu. (5.5.4)

The Kuramoto-Sivashinsky (KS) equation is challenging because the solution exhibits spatiotem-

poral chaos and so has a Fourier spectrum that varies in time. This leads to potentially different

dynamics at each timestep in the online learning perspective. The PDE also has a 4th-order deriva-

tive in space which is difficult to compute accurately and to identify via sparse regression, especially
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when noise is present. We simulate the solution using a high-order method (accurate to 6-7 digits)

and use a dataset of 256 × 3496 points in space and time at resolution (∆x,∆t) = (0.393, 0.586).

Online iterations take less than 0.01 seconds, which includes building the linear system (G(t),b(t)),

which is the most costly step.

In Figure 5.5.1 the average evolution of E2(ŵ(t)) and TPR(ŵ(t)) is depicted for various noise

levels σNR and memory capacities Kmem. The system is correctly identified for all trials when

Kmem ∈ {13, 17, 21, 25} and σNR ∈ {0, 0.001, 0.01}, with relative errors E2 less than 10−2 once the

system is identified. For larger noise σNR = 0.1, results stagnate at sub-optimal values, indicating

that more data is needed to identify the system (note that G(t) only has 214 rows). With Kmem = 5

we recover the correct system only in the noiseless case (σNR = 0), indicating that 5 points in time

does not result in accurate resolution of the dynamics.

5.5.2 Variable-medium nonlinear wave equation in 2D (W2D)

∂ttu = c(t) (∂xxu+ ∂yyu)− u3 (5.5.5)

We examine a variable-medium nonlinear wave equation in 2D, given by equation (5.5.5), where

the variable medium is modeled by the time-varying wavespeed

c(t) = 1 + (0.2)
2

π
arctan(40 cos(2π(0.1)t)),

The wavespeed is a smoothed square wave and represents a system with abrupt speed modulation

(see Figure 5.5.3 for depictions). We simulate the solution using a Fourier ⊗ Legendre spectral

method in space with leap-frog timestepping. The exact data Uexact has dimensions 129×403×1639

in (x, y, t) with resolution (∆x,∆t) = (0.0156, 0.0122). Each snapshot U(t) is 0.42 megabytes (Mb)

and online iterations take approximately 0.08 seconds.

Figure 5.5.2 shows robust recovery for Kmem ∈ {13, 17, 21, 25} up to σNR = 0.1, with rapid

identification for small noise. This is despite abrupt changes in the wavespeed c. For Kmem = 9 we

see recovery up to σNR = 0.001, indicating that for larger noise 9 points in time is insufficient to

discretize the integrals ∂ttψ ∗ u accurately, analogous to the case Kmem = 5 for KS.

The left panel of Figure 5.5.2 shows that once the system is identified, abrupt changes in

the wavespeed temporarily increase the coefficient error E2, but the correct support S? remains

identified and the errors swiftly decay. In Figure 5.5.3 we plot the average learned wavespeed ĉ(t)

as well as the maximum and minimum values of ĉ(t) attained over all 100 trials, revealing that

increasing Kmem from 17 to 25 leads to a significant decrease in the variance of ĉ after the system

has been identified. This is purely an affect of using the weak form to discretize the time derivatives,

and demonstrates that even under large noise and abruptly changing coefficients, the algorithm is

able to maintain support recovery and accuracy.
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Figure 5.5.1: Online identification of the Kuramoto-Sivashinsky equation (5.5.4) for Kmem ∈
{5, 9, 13, 17, 21, 25} and (top to bottom) σNR ∈ {0, 0.001, 0.01, 0.1}. Left: average coefficient error
E2(ŵ(t)). Right: average total positivity ratio TPR(ŵ(t)).
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Figure 5.5.2: Online identification of the variable medium nonlinear wave equation (5.5.5) for
Kmem ∈ {9, 13, 17, 21, 25} and (top to bottom) σNR ∈ {0, 0.001, 0.01, 0.1}. Left: average coefficient
error E2(ŵ(t)). Right: average total positivity ratio TPR(ŵ(t)).
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Kmem = 17, σNR = 0.01 Kmem = 25, σNR = 0.01

Kmem = 17, σNR = 0.1 Kmem = 25, σNR = 0.1

Figure 5.5.3: Online estimation of the wavespeed c(t) (shown in black) for PDE (5.5.5). The
average learned wavespeed ĉ(t) is shown in red while the blue shaded region shows the maximum
and minimum values attained over all 100 trials. Notice the accuracy for later iterations when
σNR = 0.01, and the reduction in variance moving from Kmem = 17 to Kmem = 25 when σNR = 0.1.
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5.5.3 Wave equation in 3D (W3D)

∂ttu = ∂xxu+ ∂yyu+ ∂zzu (5.5.6)

For our last example we treat the linear wave equation in 3D. Exact data Uexact has dimensions

128× 128× 128× 960 in (x, y, t) with resolution (∆x,∆t) = (0.0491, 0.0122). Each snapshot U(t)

is 16.8 Mb and online iterations take approximately 1.3 seconds.

Results are depicted in Figure 5.5.4. We again find robust recovery for Kmem ∈ {13, 17, 21, 25}
up to σNR = 0.1, although in 5% of trials at σNR = 0.1 the Kmem = 13 case finds a spurious term

≈ −0.8u. Even at σNR = 0.1 the coefficients are accurate to more than 2 digits once recovered

for Kmem ≥ 17. For Kmem = 9 we see poor performance for the same reason as above with W2D,

but now manifesting as recovery of the spurious term ≈ −0.8u, indicating that the inaccurate

computation of ∂ttψ ∗u produces spurious damping. This is not an altogether unreasonable affect if

computing ∂ttψ ∗ u numerically is viewed as an attenuated second derivative calculation, although

it does imply that higher-order time derivatives require more snapshots to be saved in memory.

5.6 Conclusions

We have demonstrated on several protoypical examples, and over a wide range of noise and

memory scenarios, the viability of an online algorithm for PDE identification based on the weak-

form sparse identification of nonlinear dynamics algorithm (WSINDy). The core of the method

combines a weak-form discretization of candidate PDEs with the online proximal gradient descent

algorithm applied directly to the least squares cost function with `0-pseudo-norm regularization

(5.4.2). Compared with the more common approach of regularizing the `0-pseudo-norm (e.g. with

‖·‖1 or weighted variants [26]), we find that directly applying proxλ‖·‖0 , leading to hard thresholding,

and adaptively selecting λt, exhibits good performance in efficiently identifying systems, handling

noise, and tracking time-varying coefficients.

Numerical experiments with an abruptly changing wavespeed indicate that our method is a

lightweight counterpart to existing methods for variable coefficients (e.g. [116]), which may be of

independent interest in the control of wave equations in variable-media ([43, 45, 108, 126, 30, 139]).

Examination of the wave equation in 3D also offers a different perspective on PDE identification in

higher dimensions: problems with large datasets can be implemented in an online data-streaming

fashion (not necessarily along the time axis as implemented here). It may therefore be advantageous

from the standpoint of memory usage to solve certain batch problems in the online manner we have

presented.

The algorithm’s successes warrant further investigation in a number of areas. While we have

characterized stationary points of the batch algorithm and proved boundedness of the average

dynamic regret, we leave a more complete analysis to future work. In particular, one could analyze
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Figure 5.5.4: Online identification of the wave equation in three spatial dimensions (5.5.6) for
Kmem ∈ {9, 13, 17, 21, 25} and (top to bottom) σNR ∈ {0, 0.001, 0.01, 0.1}. Left: average coefficient
error E2(ŵ(t)). Right: average total positivity ratio TPR(ŵ(t)).
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the error
∥∥w(t) −w?(t)

∥∥ as a function of library Θ, test function ψ, data sampling rates (∆x,∆t),

memory sizeKmem, noise ratio σNR, etc. It may also advantageous to design adaptive schemes which

update Θ and ψ throughout the course of the algorithm, depending on the dynamics of the data and

previously learned equations. We also note that an obvious next direction is to identify switching

systems where the true support S?t changes with time. Nevertheless, the current framework is

well-suited for a large variety of problems and opens the door to online PDE identification as well

as the possibility of solving batch problems in an online manner.
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Appendix

5.A Column scaling and non-uniform thresholds

For stability, we normalize the columns of G(t) at each step, defining G̃(t) = G(t)M(t) with

M(t) = diag

(∥∥∥G(t)
1

∥∥∥−1

2
, . . . ,

∥∥∥G(t)
IJ

∥∥∥−1

2

)
.

In particular, this allows for a larger stepsize α̃t = 1/
∥∥∥(G̃(t))T G̃

(t)
St

∥∥∥
2

and leads to a reasonable

estimate α̃t = 1/
√
|St|IJ for a stepsize that does not require computation of the matrix 2-norm.

For more flexibility, we allow for non-uniform thresholding. For a set of thresholds λλλ ∈ RIJ , we

define the non-uniform thresholding operator Hλλλ by

(Hλλλ(x))i =

xi, |xi| ≥ λλλi
0, otherwise.

This happens to be the proximal operator of the non-uniform `0-norm

‖x‖0,λλλ :=
IJ∑
i=1

λλλ2
i1R\{0}(xi), (5.A.1)

where ‖x‖0,λλλ = λ2 ‖x‖0 when λλλ = (λ, . . . , λ). The resulting online cost function being minimized

after incorporation of both non-uniform thresholding and column rescaling is

F̃t(w;λλλ(t)) =
1

2

∥∥∥G̃(t)w − b(t)
∥∥∥2

2
+

1

2
‖w‖0,(M(t))−1λλλ(t) , (5.A.2)

whose fixed points w̃?,(t) coincide with those of the desired cost function

Ft(w;λλλ(t)) =
1

2

∥∥∥G(t)w − b(t)
∥∥∥2

2
+

1

2
‖w‖0,λλλ(t) (5.A.3)

after a diagonal transformation w?,(t) = M(t)w̃?,(t). With these two pieces, the online algorithm
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for (5.A.2) becomesw̃(t) = (M(t))−1ŵ(t)

ŵ(t+∆t) = Hα̃tλλλ(t)

(
M(t)

(
w̃(t) − α̃t(G̃(t))T

(
G̃(t)w̃(t) − b(t)

)))
,

however this can equivalently be written in terms of the desired coefficients ŵ(t) as

ŵ(t+∆t) = Hα̃tλλλ(t)

(
ŵ(t) − α̃t(M(t))2(G(t))T

(
G(t)ŵ(t) − b(t)

))
. (5.A.4)

In direct analogy to the batch WSINDy thresholding scheme (5.3.4)-(5.3.5), we use thresholds

λλλ(t) = max(1,
∥∥b(t)

∥∥diag(M(t)))λt, which eliminate small coefficient values mini∈St |ŵ
(t)
i | ≥ λt as

well as small terms in the sense of dominant balance with respect to b(t):

min
i∈St

∥∥∥G(t)
i ŵ

(t)
i

∥∥∥
2∥∥b(t)

∥∥
2

≥ λt.

The update rule (5.4.4) for λt is unchanged after replacing Ft(w;λt) with Ft(w;λλλ(t)) defined in

(5.A.3).

5.B Implementation and Computational Complexity

The offline phase has four components:

1. Initialize hyperparameters ψ(x, t) = φ(x)θ(t), Θ = {Dααα(i)
fj}I,Ji=0,j=1, ∆λ, λmax, λ0, where

the test function ψ is either prescribed manually or selected using the changepoint algorithm

from [99] using the initial Kmem slices {U(0), . . . ,U((Kmem−1)∆t)}.

2. Compute and store the Fourier transforms {D̂ααα(i)
ψ}Ii=0 to reuse at each step when computing

convolutions (recall ψ is separable so this storage cost is negligible).

3. Compute initial library of spatially integrated terms

Ψ := {Ψ(t)}(Kmem−1)∆t
t=0 :=

{{
Dβββ(i)

φ ∗ fj(U(t))(Qx, t)
}I,J
i=0,j=1

}(Kmem−1)∆t

t=0

where βββ(i) = (ααα
(i)
1 , . . . ,ααα

(i)
d ) is the spatial part of the multi-index ααα(i) operating on the spatial

part φ of the test function ψ (recall that Qx is the set of spatial points over which convolutions

are evaluated, also equal to the number of rows in G(t)).

4. Compute initial weights ŵ(0) = (G(0))†b(0) where b(0) and G(0) are obtained by integrating

the elements of Ψ in time against the corresponding temporal test functions Dααα
(i)
d+1θ.
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For each t in the online phase we compute Ψ(t) using only the incoming slice U(t), which replaces

Ψ(t−Kmem∆t) in memory. (G(t),b(t)) are then computed by integrating the elements of Ψ in time

against the corresponding temporal test functions Dααα
(i)
d+1θ, which amounts to a series of dot products

between length-Kmem vectors. Computation of G(t) at each time t thus requires J |X| function

evaluations fj(U
(t)) (each counted as 1 floating point operation (flop)) followed by IJ convolutions

against Dβββ(i)
φ, and finally integration in time. The total flop count at each step is at most

J |X|
(

1 + CI logN + 2IKmem
|QX|
|X|

)
where C is such that x∗y costs CN logN using FFTs for length-N vectors x and y, minus the cost

of one FFT (since we have precomputed these for Dβββ(i)
φ) and N ≈ |X|1/d is the one-dimensional

length scale of the data. In other words, only

F = J

(
1 + CI logN + IKmem

|Qx|
|X|

)
flops are performed per incoming data point in U(t) (and a more careful analysis leads to a lower

cost in the factor CI logN by incorporating the subsampling X → Qx). Note that F does not

depend on the spatial dimension d of the data set (except through library term I, which might

increase with d as more differential operators become added). The total working memory W to store

Ψ and (G(t), b(t)) as outlined above is given by W = IJ |Qx|Kmem + (I + 1)J |Qx| double-precision

floating point numbers (DPs).

Remark 13. There are several natural choices to consider to either decrease storage restrictions

or increase computational speed. However, it is not clear that the anticipated savings will man-

ifest. For instance, we could instead store the spatial Fourier transforms of the nonlinearities

{ ̂fj(U(t))}J,(`+Kmem−1)∆t
j=1,t=`∆t , resulting in a working memory of J ·Kmem · |X| instead of IJ |QX|Kmem

to store Ψ. This would require that we compute spatial convolutions over all Kmem time slices

at each time point, instead of spatial convolutions over just the incoming time slice U(t), hence

resulting in a Kmem-fold increase in computation time, as this is the leading-order cost. In addi-

tion, the storage “savings” may actually be worse, specifically if I|Qx| ≤ |X|. We believe that the

method outlined above provides a near-optimal balance of computational complexity and storage

requirements, with a heavier emphasis on reducing computational complexity.

5.C Proof of Lemma 6

Consider w such that one of the following holds:

(i) w is a local minimizer of (5.3.3)

(ii) w = Hλ

(
w −GT (Gw − b)

)
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(iii) With S = supp (w), we have that wS ∈ arg minz ‖GSz− b‖22 and

max
i∈Sc

∣∣GT
i (Gw − b)

∣∣ < λ ≤ min
i∈S
|wi| .

Then it holds that (ii) ⇐⇒ (iii) =⇒ (i). Moreover, if w a global minimizer, then (i) =⇒ (iii).

Proof. (iii) =⇒ (ii) is immediate. To show (ii) =⇒ (iii), let S = supp (w). Then we have

wS = wS −GT
S (Gw − b),

which implies that mini∈S |wi| ≥ λ so that GT
SGSwS = GT

Sb, so that wS ∈ arg minz ‖GSz− b‖22.

On Sc we have

Hλ

(
GT
Sc (Gw − b)

)
= 0 =⇒ max

i∈Sc

∣∣GT
i (Gw − b)

∣∣ < λ.

To show that (ii) and (iii) imply (i), we note that under usual assumptions of two closed, convex

and proper functions f and g, we have

w ∈ proxg (w − ∂f(w)) ⇐⇒ 0 ∈ ∂f(w) + ∂g(w) =⇒ w ∈ argmin(f + g),

however ‖·‖0 is clearly not convex7. Instead we can directly show that for a perturbed vector w̃ =

w+ηηη, for suitably small ‖ηηη‖ the objective is non-decreasing. Using that wS ∈ arg minz ‖GSz− b‖22,

let P⊥S be the projection onto {span(GS)}⊥. The difference in objective F is then given by

F (w̃;λ)− F (w;λ) =
1

2

(∥∥∥P⊥Sb + Gηηη
∥∥∥2

2
−
∥∥∥P⊥Sb

∥∥∥2

2

)
+
λ2

2
(‖w̃‖0 − ‖w‖0)

=
1

2
‖Gηηη‖22 +

〈
P⊥Sb,Gηηη

〉
+
λ2

2
(‖w̃‖0 − ‖w‖0) .

If supp (ηηη) ⊂ supp (w) and ‖ηηη‖∞ < λ, then ‖w̃‖0 = ‖w‖0 and
〈
P⊥Sb,Gηηη

〉
= 0, hence F (w̃;λ) −

F (w;λ) ≥ 0, with equality only if Gηηη = 0, which in particular is not possible when GS is full rank

unless ηηη = 0. If supp (ηηη) /∈ S and ‖ηηη‖∞ < λ, then P⊥Sb = 0 implies a strict increase in F , while if

P⊥Sb 6= 0 then

‖ηηηSc‖2 < ε :=
λ2

2

1∥∥P⊥Sb
∥∥

2
‖GSc‖2

,

implies a strict increase in F . To see this, note that
〈
P⊥S ,Gηηη

〉
=
〈
P⊥S ,GScηηηSc

〉
implies the bound

F (w̃;λ)− F (w;λ) ≥ −
∥∥∥P⊥Sb

∥∥∥
2
‖GSc‖2 ‖ηηηSc‖2 +

λ2

2
> 0.

Note that ε is not tight. Combining these conditions gives a ball around w over which F is non-

7In fact the subdifferential ∂ ‖·‖0 (w) = ∅ unless w = 0, upon which ∂ ‖·‖0 (w) = {0}.
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decreasing, hence w is a local min. Finally, that w a global minimizer implies (iii) can be found

in [158].

5.D Proof of Theorem 2

For convenience, we restate the theorem here. Without loss of generality in the following we

set ∆t = 1.

Theorem 3. Let σ1,t and σn,t denote the first and last singular values of the matrix G(t) ∈ Rm×n.

Assume the following: maxt λt ≤ λ < ∞, mint σn,t ≥ σmin > 0, maxt σ1,t ≤ σmax, and supt αt <

σ−2
max, inft αt > 0. In addition, assume that the global minimizer w?(t) of Ft(w;λt) is unique for

every t and satisfies |S?t | ≥ s > 0 where S? = supp (w?(t)). Finally, assume that the tracking gap is

globally bounded: ‖w?(t)−w?(t+ 1)‖2 := dt ≤ d. Then the dynamic regret (5.4.5) grows at-worst

linearly:

RegD(T ) ≤ C1 + C2T

for some C1 > 0 and C2 > 0. In particular, 1
TRegD(T ) remains bounded.

Proof. First we decompose Ft(w;λt) = gt(w)+ht(w) =
∥∥G(t)w − b(t)

∥∥2

2
+λ2 ‖w‖0. We can bound

the difference in gt as follows:

gt(w
(t))− gt(w?(t)) =

∥∥∥G(t)w(t)
∥∥∥2

2
−
∥∥∥G(t)w?(t)

∥∥∥2

2
− 2

〈
b(t),G(t)

(
w(t) −w?(t)

)〉
=
∥∥∥G(t)(w(t) −w?(t))

∥∥∥2

2
− 2

〈
G(t)(w(t) −w?(t)),G(t)w?(t)− b(t)

〉
taking |·| of both sides and noting from the Lemma that

∥∥(G(t))T (G(t)w?(t)− b(t))
∥∥
∞ < λt implies

that

gt(w
(t))− gt(w?(t)) ≤ σ2

max

∥∥∥w(t) −w?(t)
∥∥∥2

2
+ 2λt

√
|(S?)c|

∥∥∥w(t) −w?(t)
∥∥∥

2

≤ σ2
max

∥∥∥w(t) −w?(t)
∥∥∥2

2
+ 2λ

√
n− s

∥∥∥w(t) −w?(t)
∥∥∥

2
.

For ht we have simply ∣∣∣ht(w(t))− ht(w?(t))
∣∣∣ = λ2

t ||St| − |S?t || ≤ λ
2
(n− s).

For any vectors x,y ∈ Rn, it holds that

‖Hλ(x)−Hλ(y)‖2 ≤ ‖x− y‖2 + λ
√
|Sx4Sy|

where Sx4Sy = (Sx ∩ Scy) ∪ (Sy ∩ Scx) is the symmetric difference of the sets Sx = supp (Hλ(x))
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and Sy = supp (Hλ(y)). This implies, together with stationarity of w?(t),∥∥∥w(t+1) −w?(t)
∥∥∥

2

=
∥∥∥Hαtλt

(
w(t) − αt(G(t))T

(
G(t)w(t) − b(t)

))
−Hαtλt

(
w?(t)− αt(G(t))T

(
G(t)w?(t)− b(t)

))∥∥∥
2

≤
∥∥∥(I− αt(G(t))TG(t)

)
(w(t) −w?(t))

∥∥∥
2

+ αtλt

√
|St+14S?t |

≤ max
(
|1− αtσ2

1,t|, |1− αtσ2
n,t|
) ∥∥∥w(t) −w?(t)

∥∥∥
2

+ αtλt

√
|St+14S?t |

:= ρt

∥∥∥w(t) −w?(t)
∥∥∥

2
+ αtλt

√
|St+14S?t |.

Using that
∥∥w(t+1) −w?(t+ 1)

∥∥
2
≤
∥∥w(t+1) −w?(t)

∥∥
2

+ dt, we have the recurrence relation

∥∥∥w(t+1) −w?(t+ 1)
∥∥∥

2
≤ ρt

∥∥∥w(t) −w?(t)
∥∥∥

2
+ dt + αtλt

√
|St+14S?t |, (5.D.1)

where, by assumptions on σ1,t, σn,t and αt, it holds that maxt ρt ≤ ρ for some ρ < 1, hence we get

the bound

∥∥∥w(t) −w?(t)
∥∥∥

2
≤ ρt

∥∥∥w(0) −w?(0)
∥∥∥

2
+ (d+ αλ

√
n)

t∑
s=0

ρs ≤ ρt
∥∥∥w(0) −w?(0)

∥∥∥
2

+
d+ αλ

√
n

1− ρ
.

(5.D.2)

We note in passing that this implies a uniform error bound on
∥∥w(t) −w?(t)

∥∥
2

which asymptotically

depends only on the tracking gap dt and the support difference |St4S?t |. Finally, using this bound

and previous calculations for g and h, we get

RegD(T ) ≤ C̃1

T∑
t=0

ρt + C2T ≤ C1 + C2T

where

C1 =
C̃1

1− ρ
=
σ2

maxρ

1− ρ

∥∥∥w(0) −w?(0)
∥∥∥2

2
+

2
∥∥w(0) −w?(0)

∥∥
2

(1− ρ)2

(
λ
√
n− s+

(d+ αλ
√
n)σ2

max

1− ρ

)
(5.D.3)

C2 = (σ2
max − 1)

(
d+ αλ

√
n

1− ρ

)2

+

(
d+ αλ

√
n

1− ρ
+ λ
√
n− s

)2

. (5.D.4)

This completes the proof.
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Chapter 6

Conclusion

We have investigated a weak formulation of the equation discovery problem, finding that it is

both generally applicable and advantageous for a wide range of scenarios. As is often the case in

mathematics, the starting point is to relax assumptions, in this case extending differential equations

to their integral counterparts. Beyond that, we were fortunate to find a subclass of test functions

within the uncountably infinite space of possibilities that affords computational efficiency, high

accuracy, and most importantly, robustness to noise. This has been demonstrated for ordinary

differential equations, partial differential equations, and stochastic interacting particle systems,

and the computational efficiency shows promise for online discovery of equations. Still, the utility

of this method has not been brought to bear on experimental data, and fundamental theoretical

limits have not been established. These are among the many future directions that are possible

now having extensively verified our approach in the test cases presented here. We will now review

several important next directions, and where possible, indicate progress that has been made.

6.1 Future Directions

6.1.1 Coarse-Graining and Homogenization

As demonstrated in [98], the weak form is capable of finding homogenized versions of equa-

tions that have highly-oscillatory components. In fact, in this example we discover equations

directly from particle trajectories, hence we demonstrate two limits: the passage from particle

to continuum, and the passage from a highly-oscillatory continuum description to a homogenized

description. This and other mean-field equations can be seen as a form of coarse-graining, where

the microscale information (unavailable to the observer) is averaged over, producing an equation

only for the macroscale variables. Typically, the weak form is the key analytical tool used to pass

from microscale to macroscale. Put another way, the weak form is already designed to “see into

the macroscale” using data from intermediate scales. In future works we aim to demonstrate more

broadly that this holds computationally and in practice.
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6.1.2 Closure Modeling

A related line of inquiry to coarse-graining is closure modeling. In this case the true equations

are unavailable (due to e.g. experimental limitations), however an effective equation in terms of

observable variables is known apart from a few terms that need modeling. These terms typically

can be well-approximated using gradients of state variables (as in turbulence modeling), but may

involve more complex dependencies and higher-order derivatives. WSINDy may come to the fore

in identifying key closure terms from the data, however it appears necessary to extend the current

architecture to include terms that cannot have strong derivatives transfered to test functions using

integrated by parts, such as (∂xu)2. We discuss this more below.

6.1.3 Biological Applications

The original influence for considering a weak formulation of the discovery problem was biological

data on collective cell migration. This scenario creates the perfect storm for consideration of weak

formulations, as it is highly multiscale, contains many sources of noise, and results in non-smooth

dynamics.

In these experiments, cells are grown in wells and driven to migrate into vacant areas of the wells.

The path from experimental imaging to trajectories of cell nuclei over time is frought with noise

from imperfect nuclei staining, image tracking errors, and intrinsic Brownian motion, obscuring

the interactions between nearby cells. Noise at the cell level suggests a more macroscale approach:

viewing the population as a continuum and modeling its evolution using a PDE. This is inherently

related to the aims of the previous section on coarse-graining: a macroscale description of cells

constitutes the effective dynamics (coarse-grained, mean-field, homogenized, etc.) for a medium

driven by a volatile, yet possibly homogeneous, microstructure. Finally, due to sharp fronts between

pixels with cells and those without cells, the dynamics at the PDE level are not smooth. Altogether,

noise, coarse-graining, and lack of smoothness are generically handled by a weak formulation.

This is ongoing work with the members of Xuedong Liu’s lab (CU Biochemistry), with many

different directions in the works. Our first submitted work is [102] where we adapt WSINDy to

identify the rules of interacting particle systems containing multiple species of particles. In this

work we simultaneously perform model selection and classification of the population into different

species. However, this is a methodology paper, and has not yet been applied to experimental

data. Several experimental challenges in this direction are (i) growing cell cultures to high enough

cellular density to generate cell-cell interactions, and (ii) capturing a time window of high collective

motility, which is difficult to predict, and (iii) imaging the cells frequently enough to accurately

infer dynamics. Luckily, understanding of these challenges is growing rapidly. We believe that it

is only a matter of time before viable datasets are produced to conduct real inference of collective

cell migration models using WSINDy.
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6.2 Open Questions

6.2.1 Fundamental Limits of Recovery

The most important question we can hope to answer about weak-form equation discovery is the

following: under what conditions is recovery of the correct model is guaranteed? Conditions may

take the form of (i) sufficient data resolution in space and time, (ii) limitations on the level and

type of noise corrupting the data, and (iii) bounds on the relative magnitudes of various coefficients

and terms in the true model.

Related to (i) and (ii), we would like to know how coarse the data can be gathered and still

recover the system. This is of fundamental importance to practitioners because experiments are

rarely cheap to perform. The coupled dependence on noise and data resolution is at the heart of

theoretical recovery concerns, and we hope to attack this problem in the future.

Also related to (i) and (ii), on the opposite side of the spectrum, is the question of convergence.

In the infinite-data limit, does WSINDy provably recovery the system? In the case of interacting

particle systems, we partially answered this, but importantly did not take sparse regression into

account (only ordinary least squares). There does exist a consistency result for `1-minimization

in the infite-data limit [62], however it is assumed that
∥∥∥G†SGSc

∥∥∥
1
< 1 on the true support set

S, which isn’t possible to guarantee when S is unknown, and rarely holds in practice. Still, the

overwhelming evidence that WSINDy is robust to high levels of corruption, and improves with

data availability, suggests that the MSTLS algorithm employed throughout this dissertation has a

provable range of recovery that includes a wide range of models.

Related to (iii) are two ideas. First is the subspace of solutions that the data is sampled from.

In particular, if we have a term w?
sjD

αsfj(u) that is outside of the dominant balance of the equation

(i.e. w?
sjD

αsfj(u)� ∂tu), how much corruption can the data handle and still identify that w?
sj 6= 0?

Or the opposite case of a system close to equilibrium: how small can ∂tu be and still identify the

model? To the best of our knowledge, these questions have not yet been answered quantitatively,

but greatly impact the usefulness of any system recovery algorithm in practice.

The second idea related to (iii) concerns the absolute magnitudes of the coefficients w?. Many

works on sparse regression for PDEs threshold on the magnitude, which may have no bearing on

the term magnitude w?
sjD

αsfj(u). By rescaling the data as in Chapter 3 we arrive at an intriguing

paradigm, that one may threshold the coefficients at any scale one choose, so then the question

becomes, which scales are appropriate? In any case, there is much work to be done at the interplay

of sparse regression and scales in model recovery.

6.2.2 Systems that cannot be integrated by parts

WSINDy is currently only capable of eliminating numerical differentiation for terms that can be

directly integrated by parts. In particular, terms that are nonlinear in derivatives of state variables,

such as (∂xu)2, have no representation Dαf(u) for linear (differential) operator Dα and nonlinear
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function f (as far as I know). This is a limitation for example in turbulence modeling, as closure

terms are often nonlinear in gradients of the velocity field. An obvious solution to this problem is to

simply approximate the derivative from data (∂xU ≈ ∂xu) as is done in strong formulations of the

discovery problem, but then still apply the weak form without integrating by parts (i.e. compute

ψ ∗ (∂xU)2). However, it remains to be seen what numerical techniques are most advantageous for

computing (∂xU)2, knowing that convolution with ψ will follow.

Another large class of systems that are not immediately amenable to the weak form are discrete

dynamical systems. In particular, it is not clear how to integrate the system un+1 = F (un) against

a test function, and whether this offers an advantage. However, there does exist a summation by

parts formula:

n∑
k=1

ψk
(
uk+1 − uk

)
=
(
ψnun+1 − ψ1u1

)
−

n∑
k=1

(
ψk − ψk−1

)
uk.

If the dynamical system has a recursive structure, un+1 = un + F (un), it is possible to form the

discrete-weak regression problem from the equation

−
n∑
k=1

(
ψk − ψk−1

)
uk =

n∑
k=1

ψkF (uk)

for test functions ψ with ψn = ψ1 = 0. However, in this case the left-hand side is equivalent to

the left-hand side of the previous equation, so it is not clear that summation by parts offers any

advantage.

6.2.3 Optimal Test Functions and Quadrature

The question of which test functions are best suited for certain problems and certain noise levels

remains open. The test functions used throughout this dissertation were first found experimentally

to yield high accuracy. We then proved why this was the case using to the Euler-Maclaurin formula.

This did not immediately explain why the weak form works well to ameliorate noise. Using Fourier

analysis, we realized a connection between the spectrum of the data and the spectrum of the test

function, and developed a way of choosing test functions to damp high-frequency noise. We have

aimed to provide constraints that are agnostic to the form of test function, namely constraints on

the decay rate of the test function in both Fourier space and real space. This does not require

the test function to be a piece-wise polynomial, so can easily be extended to another class of test

functions.

It is clear that the test function must be chosen in tandem with a quadrature rule. The

trapezoidal rule is clearly advantageous for uniformly-spaced data, both in speed and accuracy.

While uniformly-spaced data is most common (e.g. pixels are uniformly spaced, and time sampling

is often uniform), adapting WSINDy to the case of non-uniformly-spaced data would greatly widen
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its scope. For instance, it is well-known that wall-bounded turbulence and other flow-separation

problems cannot be simulated on a uniform grid. There are at least two ways to adapt the current

framework to these problems. The first is to find test functions and a quadrature rule that are

specific to the grid available. The other is to interpolate the data back onto a uniform grid, and

then use framework we’ve developed. An interpolation problem can be made linear in the data, so

we can directly compute the effect on the noise distribution resulting from interpolation. Consider

U = u(x) + ε with ε ∼ N (0, σ2) i.i.d. where x is a possibly non-uniform grid, and we would like to

interpolate onto a uniform grid x. With interpolation operator Φ, the resulting data U satisfies

U = ΦU = Φu(x) + η,

where

η = Φε ∼ N (0, σ2ΦΦT ).

Now we see that we are in the framework of correlated noise, with variance depending on the

conditioning of Φ. This relates back to the previous section of fundamental limits of discovery:

how correlated can the noise be and still discover the system? This is one of the many possible

future directions to take this work.
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[4] Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for certain deep

neural networks. arXiv preprint arXiv:1906.00193, 2019.

[5] Aleksandr Y Aravkin, Robert Baraldi, and Dominique Orban. A proximal quasi-newton trust-

region method for nonsmooth regularized optimization. arXiv preprint arXiv:2103.15993,

2021.

[6] Joseph Bakarji and Daniel M Tartakovsky. Data-driven discovery of coarse-grained equations.

Journal of Computational Physics, 434:110219, 2021.

[7] GI Barenblatt. On some unsteady fluid and gas motions in a porous medium. Prikl. Mat.

Mekh, 16(1):67–78, 1952.

[8] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization.

Operations research, 63(5):1227–1244, 2015.

[9] Gregory Beylkin and Martin J Mohlenkamp. Algorithms for numerical analysis in high di-

mensions. SIAM Journal on Scientific Computing, 26(6):2133–2159, 2005.

[10] Dapeng Bi, Xingbo Yang, M Cristina Marchetti, and M Lisa Manning. Motility-driven glass

and jamming transitions in biological tissues. Physical Review X, 6(2):021011, 2016.

[11] Bo Martin Bibby and Michael Sørensen. Martingale estimation functions for discretely ob-

served diffusion processes. Bernoulli, pages 17–39, 1995.

[12] Jaya PN Bishwal. Parameter estimation in stochastic differential equations. Springer, 2007.



149

[13] Jaya Prakash Narayan Bishwal et al. Estimation in interacting diffusions: Continuous and

discrete sampling. Applied Mathematics, 2(9):1154–1158, 2011.

[14] Vincent D Blondel, Julien M Hendrickx, and John N Tsitsiklis. Continuous-time average-

preserving opinion dynamics with opinion-dependent communications. SIAM Journal on

Control and Optimization, 48(8):5214–5240, 2010.

[15] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations.

Journal of Fourier analysis and Applications, 14(5):629–654, 2008.

[16] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.

Applied and computational harmonic analysis, 27(3):265–274, 2009.

[17] Niklas Boers and Peter Pickl. On mean field limits for dynamical systems. Journal of

Statistical Physics, 164(1):1–16, 2016.
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